It’s Now Legal to Sell Seeds in California

Civil Eats | October 6, 2016

seed packets available at seed swap

Seed packets on offer at a swapping event. Photo credit: Local Food Initative via Creative Commons

Free seed libraries, swaps, and exchanges increase access to local food and can play a large role in both expanding and preserving biodiversity. Yet for almost 80 years, these non-commercial operations have been running afoul of the law.

That’s because the U.S. Department of Agriculture’s (USDA) Federal Seed Act mandates that any activity involving non-commercial distribution of seed be labeled, permitted, and tested according to industrial regulations that would be both costly and burdensome to the over 460 estimated seed libraries operating in 46 states.

Now the tide may be starting to turn.

California—home to over 60 seed libraries and hundreds of swaps, according to Rebecca Newburn, co-founder and coordinator of the Richmond Grows Seed Lending Library—recently became the fourth state in two years to pass a law that exempts non-commercial seed activities from regulatory requirements.

“We wanted to create the legal framework for an alternative system that is not reliant on large companies to provide open-pollinated seed varieties,” said Neil Thapar, the food and farm attorney at the Sustainable Economies Law Center (SELC). “Seed sharing has a direct connection to building local economic resilience.”

SELC partnered with a variety of groups throughout California—including local seed libraries, nonprofit organizations, and a class of fourth graders in Marin County—to advocate for AB 1810, the legislation co-sponsored by Assemblymembers Marc Levine and Devon Mathis.

While none of the seed libraries and seed exchanges in California had reported being targeted by the government, Thapar said, advocates nationwide became concerned when state officials shut down a Pennsylvania seed sharing library in 2014, citing the violation of a law mirroring the Federal Seed Act. The next year, Nebraska and Minnesota libraries faced similar crackdowns (seed control law is mostly uniform across all 50 states).

But in the last two years, Nebraska, Illinois, and Minnesota have all passed laws protecting non-commercial seed activity from regulatory requirements. And the effort appears to be spreading. Thapar says he has been contacted by residents in Florida, Ohio, and New York.

SELC is taking action to get laws changed in all 50 states. Almost all state seed control officials use “model legislation” (officially dubbed the Recommended Uniform State Seed Law or RUSSL) developed by the Association of American Seed Control Officials as the template for their own laws. SELC has been working with the Association to add a section to RUSSL specifying that noncommercial seed sharing activities be exempt from industrial labeling, permitting, and testing requirements.

“If we can get the RUSSL to change that, then it would facilitate more states to incorporate that language over time,” Thapar said.

Sara McCamant, the co-founder of Community Seed Exchange, a volunteer-run seed library and garden in Sonoma County, California, said she was never too concerned that state officials would attempt a crackdown.

“There are so many libraries here,” she said. “But there was concern that it could be a problem in the future. This legislation was a preventive action, as it’s becoming an issue with the seed controllers in every state.”

But McCamant emphasizes that the new protections for local seed sharing, saving, and swapping do have immediate significance for biodiversity in California

“Just one seed library can take [plant] varieties that have almost disappeared and are impossible to find and all of a sudden you can find it everywhere,” she says. By saving the seeds of the plants that appear to be the healthiest, gardeners can breed for strength of future seed generations.

Community Seed Exchange’s library includes 180 varieties of fruits, vegetables, and grains such as quinoa and amaranth. The group also maintains a garden and teaches classes on how to save seed.

But the most important impact of these programs, McCamant says, is that they build resilience in the local food system by taking power away from the handful of corporations that control the majority of the global seed industry.

“If we don’t have access to the first link of a food chain, we have no control over what to grow and what food is available to us,” she said. “The scale can be small, but the impacts can be so large.”

Note: In December 2016, Civil Eats announced that this story was one of its most popular in 2016. It was reprinted in KQED’s Bay Area Bites blog on October 11, 2016.

Will This Technology Make Fish Farming More Sustainable?

Civil Eats | July 6, 2016

Salmon farm

Salmon farm. Photo credit: antonalfred courtesy of Creative Commons

Wild seafood is disappearing rapidly and many consumers have turned to farmed fish as a way to help reverse the trend. But finding a sustainable source of food for carnivorous fish such as salmon and tuna—which rank as the second and third most popular types of seafood in America—has been a persistent challenge for aquaculture producers.

Now, a group of scientists have developed a new form of fish feed that uses no agricultural land and requires very little water. It’s called FeedKind and it’s made from bacteria that eats methane and turns it into energy.

This approach is promising because for a long time fish farms merely fed these fish a diet consisting of wild “forage” fish and oil derived from wild fish. But it often took several pounds of wild fish to produce 1 pound of farmed fish, making it a loss for the oceans.

Then, in recent years, the aquaculture industry turned to feed based on corn, soy, and wheat, usually using dried distiller grains. While these solutions are often better for the oceans, they also rely heavily on agricultural land, much in the way other animal feed does. Similarly, they rely on the use of pesticides and synthetic nitrogen fertilizer, which contribute to “dead zones” in the ocean.

“We’re taking carbon from outside the food chain, which frees up more food for humans,” says Josh Silverman, the founder and chief products officer of Calysta, a biotech startup in Silicon Valley. “And we’re turning methane into a higher value product.”

Calysta says FeedKind could address sustainability problems plaguing aquaculture, which the Food and Agricultural Organization found is one of the fastest-growing agricultural industries worldwide.

After raking in $30 million of capital from investors in a third round of funding—including animal feed giant Cargill—since December, Calysta is readying a R&D plant in England that plans to manufacture FeedKind at pilot scale by the end of this year. It’s also hoping to get a North American commercial production facility online by 2018.

FeedKind is made by first dissolving methane in water with the bacteria (methanotrophs that are commonly found in the top layer of soil). The bacteria gobbles up the methane molecules. Then, after the mixture is fermented, the protein produced from this process is extruded and formed into pellets.

“[People] have known about this bacteria for years,” says Silverman, who has a Stanford PhD in biotechnology and comes from the biopharmaceutical industry. “But no one had thought about how to use them in industrial applications.”

The alternative fish feed was originally developed over a decade ago by Norferm, a Norwegian company that won approval to sell FeedKind in the European Union. After Calysta acquired the company in 2014, Silverman says he refined the fermenting process.

Norferm only tested the product in salmon. But Silverman claims that FeedKind could also be used to feed other carnivorous fish such as halibut, sea bass, sea bream, eel, and shrimp—perhaps even terrestrial livestock and pigs, he adds.

Jan Brekke, the CEO of Sogn Aqua, a sustainable halibut farm in Norway, says he has not tested FeedKind on his fish, but is encouraged by its potential.

“The whole idea of [not] using biomass from the sea to produce fishmeal will turn global fish farming in a total different direction,” he said in an email.

FeedKind is not an environmentally pristine product. For one thing, carbon dioxide is released into the atmosphere during the fermenting process. And Silverman says that Calysta plans to source the methane for FeedKind from natural gas extracted from the electricity grid rather than capturing it from the atmosphere. (Methane is a significant component of natural gas).

Still, Carbon Trust, a London-based consulting firm, found that producing FeedKind consumed 76 percent less water than growing the same amount of protein found in soybean meal and 98 percent less water than wheat gluten. (Calysta sponsored the research, but Carbon Trust maintains that its conclusions were developed independently and the study was peer reviewed.)

Sourcing methane from the grid rather than capturing the emissions produced from human activities (such as fossil fuel production, livestock farming and decomposing landfill waste) may seem like a huge missed opportunity, considering that the greenhouse gas is over 25 times more potent than carbon dioxide.

But because natural gas is so inexpensive, Silverman says there’s no significant infrastructure or market incentive in place for his company to capture methane at commercial scale.

Still, Jillian Fry, the director of the Public Health & Sustainable Aquaculture Project at Johns Hopkins University’s Center for a Livable Future, points out that the Carbon Trust study doesn’t take into account the large environmental impact associated with fracking, a process which is responsible for two-thirds of the natural gas produced in the U.S., according to the federal government.

“It’s a glaring gap,” she says. “Even if not 100 percent [of the natural gas and methane] comes from fracking, the water, land use, and the pollution need to be taken into account,” she says.

Silverman is hoping that commercializing FeedKind will help to stimulate further the unmet demand to convert methane into something more useful—and help to build the infrastructure Calysta needs to source methane more sustainably in the future.

Fry adds that because of the carbon dioxide that’s released and the methane sourcing, it’s difficult to say at this stage if FeedKind is something everyone should throw their support behind.

But she still thinks it has promise. “We need to strike a balance—we don’t want to kill all enthusiasm for a new product and say that there’s no progress unless it’s flawless,” she says. “It’s very exciting to hear about this kind of development.”

Note: This story was reprinted in GreenBiz on August 16, 2016.

Getting Crafty: Brewing Beer From Wastewater

The Guardian US/UK | March 14, 2016

In autumn of 2014 – three years into California’s devastating drought– architect Russ Drinker became fixated on brewing beer from recycled greywater (that is, water that’s been treated after use in sinks, showers and washing clothes).

He was increasingly frustrated that the media paid little attention to water recycling. “They were focused on conservation instead. But if Californians really want to have an impact on our water use, we have to recycle our freshwater … and get over our psychological resistance to that.”

While some microbrewers have been working hard to get their water usage down – some to three gallons of water for every gallon of beer – the industry has a high water to beer ratio. Despite this, it took Drinker about a year to find a brewer up for the challenge. But when he broached the idea with the Half Moon Bay Brewing Company, a craft brewer located south of San Francisco, owner Lenny Mendonca didn’t hesitate.

Last October the brewery unveiled a version of its regular Mavericks Tunnel Vision IPA made with recycled water after a blind taste test at an urban sustainability conference in the Bay Area.

Can you tell which of the brews was made with treated wastewater? (It's on the left).

Can you tell which of the brews was made with treated wastewater? (It’s on the left). Photo credit: Half Moon Bay Brewing Company

Made using the same NASA water recycling technology as astronaut Scott Kelly used during his year long stint on the International Space Station, the tasting panel couldn’t detect which of the two pints was made with recycled water.

“This is the product [where] people think that water is the most important ingredient,” said Mendonca. “So if I can demonstrate to people that not only is [greywater beer] good, but it’s great, then why wouldn’t you use that water for everything else?”

Mendonca has only made the greywater beer available for sampling twice and says commercialising the product isn’t his first priority. California can’t legally directly pump treated recycled water back into the drinking water supply, so it’s currently not practical (shortage of supply) or cost effective. His focus instead is on using the beer as a tool to catch the eye of both policymakers and the public.

Getting the legislation to bring recycled water directly into the drinking water supply, would be the first step for mass application, just as Singapore has done with its recycled water plant.

Craft brewers turn green

Brewing beer from recycled water is an unusual approach. But a growing number of craft breweries in the US are finding new ways to reduce their environmental footprint.

Weak wort, a type of sugar wastewater generated by Colorado-based Avery Brewing Co, will be donated to the city of Boulder for use in its wastewater treatment plant to break down nitrogen. This will save the city $500 (£350) per day on the acetic acid it would have purchase to do the same job, said Chris Douville, Boulder’s wastewater treatment manager.

“We were looking for a local carbon source that others see as a waste,” he said. “It’s a mutually beneficial relationship.”

Boulder is currently outfitting its plants to treat nitrogen using weak wort, says Douville, and should be ready to put the new equipment online by the end of the year.

Other craft breweries, such as Lagunitas Brewing Company and Bear Republic Brewing Co in Sonoma County, California, are using a new onsite wastewater treatment system housed in a shipping container.

In spring 2016, the EcoVolt was installed at Lagunitas Brewery in Petaluma, Calif.

In spring 2016, the EcoVolt was installed at Lagunitas Brewery in Petaluma, Calif. Photo credit: Cambrian Innovation

The EcoVolt, developed by Boston-based startup Cambrian Innovation, is powered by electrically active bacteria that use anaerobic digestion to scrub the breweries’ wastewater of up to 90% of pollutants, according to Baji Gobburi, the company’s director of sales and marketing.

Each EcoVolt unit, which is targeted towards other boutique food and beverage operations such as wineries and dairies, can process up to 300,000 gallons of wastewater per day, and enables the breweries to reuse water in their cleaning operations and produce methane that is converted into heat and electricity.

“When Lagunitas completes the installation of its second EcoVolt, its water footprint will drop by 40%,” said Gobburi. “And the systems will also recover 20% of its facilities’ energy needs.”

It’s also been a money, time and petrol-saver. Previously, Lagunitas had to truck over 50,000 gallons a day of its concentrated wastewater to a treatment plant in Oakland over 40 miles away.

In Dexter, a town of about 4,000 people nestled in the corner of southeast Michigan, the Northern United Brewing Company has installed a smaller version of EcoVolt to treat its wastewater onsite, helped by a $200,000 (£140,000) innovative technology grant from the state of Michigan.

The technology has saved the city the millions of dollars it would have cost to give Dexter’s wastewater plant the capacity to process yeasts and sugars, said Michelle Aniol, the city’s community development manager.

“Food production here in Michigan is more of a cottage industry,” Aniol said. “So this test of the [EcoVolt] system can have implications that could be utilised throughout the rest of the state – at [cost] levels that can be more affordable for communities and businesses to grow, but get their waste within the permitted limits for discharge.”

Will this get Big Chicken to clean up its act?

Civil Eats | January 26, 2016

cooked chicken on gingham tablecloth

Cooked chicken. Photo credit: Hannah Downes via Wikimedia Commons

Americans eat a lot of chicken—around 60 pounds of it per person, at last count.

Meeting that demand has come at a price along Maryland’s Eastern Shore, one of the most concentrated areas for industrial chicken farming in the U.S. Here, farmers often raise tens of thousands of birds at a time, and spread their manure on the surrounding land in quantities the land cannot possibly absorb. As a result, over 200,000 tons of excess manure seeps into nearby waterways every year, and from there it washes into the nearby Chesapeake Bay. These high levels of nitrogen and phosphorus runoff can stimulate algae blooms, starving the water of oxygen, and killing fish and shellfish. The “dead zones” left behind also pose health risks to humans exposed to the contaminated water.

“We’re raising too many animals in a small geographic area and don’t have the cropland to use [the manure],” said Michele Merkel, co-director of the legal arm of Food & Water Watch, a national advocacy group. “So farmers end up dumping it on the land because there’s nowhere else for it to go.”

Companies like Perdue, Tyson and Mountaire contract with farmers across the U.S. to grow their broilers—an estimated 300 million per year are raised in Maryland alone. These companies retain ownership of the chickens and expect farmers to take on debt for upgrades to chicken houses and equipment. As a result they are left with few resources to help get rid of the manure responsibly.

Taxpayers have often helped foot the bill, through state programs such as one that can help pay for transporting it. But, as Merkel and other advocates see it, “The [big chicken] companies have walked away from responsibility.”

Now, that could change. The Poultry Litter Management Act (which is expected to be introduced by Senator Richard Madaleno in the Maryland state legislature in the coming week) would absolve contract farmers of their disposal responsibilities—and pass on that requirement to the chicken companies. The legislation would follow new state regulations that went into effect in June, which barred the disposal of phosphorus on soil that has the greatest risk of runoff.

If passed, the Act would be the first U.S. state legislation to require companies to take responsibility for the waste caused by the farms they work with, according to Merkel.

The local trade association for the group is opposed to the Act. “If the chicken companies become the owners through state action, hundreds of chicken growers could have a loss of income or could be forced to spend tens of thousands of dollars for fertilizers,” Delmarva Poultry Industry Inc. director Bill Satterfield told DelawareOnline last week.

Carole Morison, the Maryland chicken farmer who became known for showing the world her contract growing operations for Perdue in the 2008 documentary Food, Inc., says that the expected proposed legislation is especially timely. Morison, who now runs a pasture-based farm, says she has seen a recent rise in extra large chicken production facilities along the Delmarva Peninsula, where she lives.

“Right now we are just barely getting a handle on what needs to be done [for] runoff from the poultry industry, yet 200 more chicken houses are slated [to be built] this year,” she told Civil Eats. “We have people coming in, buying up prime farmland, and building up huge warehouses—and they live elsewhere.”

The new houses, she says, will hold 60,000 birds each—more than two times the capacity of her houses back when she was a contract grower from 1987 to 2008.

Farmland on Chesapeake Bay

Farmland on the Chesapeake Bay. Photo by Matt Rath/Chesapeake Bay Program

This burst of development is paralleling the rise in global chicken consumption. In 2014, the U.S. produced over 38,000 million pounds of broiler chicken, according to the National Chicken Council. This year, the industry group expects that it will rise to almost 41,000 million pounds. And in less than 10 years, chicken is expected to become the world’s most consumed meat, according to the Organization for Economic Cooperation and Development.

But residents along the Delmarva Peninsula who have had these mega chicken houses sprout up in their neighborhood have reported ill effects of the facilities, including the smell of ammonia and a dusty haze. In North Carolina, where large chicken houses are being built increasingly close to residential areas, neighbors have also encountering harmful gas emissions.

Regulations for the industry issued by county officials have allowed the houses to be built anywhere between 200 and 600 feet away from the road.

Residents and environmental groups have gathered at forums to figure out how to respond to the proliferation of industrial chicken farms. And they have asked for a moratorium on the farms until the government has completely phased in the tool that will show farmers which soil is at greatest risk for phosphorus runoff.

“It’s sad, because the Chesapeake Bay is a national treasure,” said Morison. “But the people who live nearby [the large chicken houses] can’t enjoy it. They can’t go outside because it smells so bad, and they can’t open their windows.”

Featured photo of broiler chicken farm by Oikeutta Eläimille courtesy Creative Commons/Flickr.

Billion dollar seafood waste upcycled into profits

The Guardian US/UK | December 14, 2015

TidalVision_founders

Tidal Vision founders Craig Kasberg (L) and Zach Wilkinson in Juneau, Alaska. Photo credit: Alex Gaynor/Tidal Vision

Since he started working on commercial fishing and crabbing boats as a teenager, Craig Kasberg loved being out at sea. Yet he was bothered by the amount of fish waste he saw being dumped back on to the ocean floor.

“The seafood industry is behind the times when it comes to byproduct utilization,” says Kasberg, a fishing boat captain based in Juneau, Alaska. “Even though some companies are making pet food, fertilizer and fishmeal [out of the waste], there’s still a lot being thrown away.”

Every year, US fishermen throw out an estimated 2bn pounds (900m kg) in bycatch alone – an amount worth about $1bn (£660m), according to nonprofit organization Oceana.

Because the US Environmental Protection Agency does allow (in some cases) fish waste to be tossed back into the ocean, seafood processors commonly dispose fish guts, heads, tails, fins, skin and crab shells in marine waters. Once there, the decomposing organic matter can suck up available oxygen for living species nearby, bury other organisms or introduce disease and non-native species to the local ecosystem.

Last autumn, Kasberg took action. He recruited a small team of scientists and engineers. Together, they

Tidal Vision salmon leather

Salmon skin leather tanned by Tidal Vision using its vegetable-based process in Juneau, Alaska. Photo courtesy Craig Kasberg/Tidal Vision

developed a vegetable-based tanning process for salmon skin. Now – a little over a year later – his company Tidal Vision has launched a line of wallets made from salmon skin leather.

The company has also been working on an environmentally-friendly way to extract a compound called chitin from crab shells to make chitosan, which has many uses in agriculture and in medicine. The conventional method for extracting chitin uses sodium hydroxide, a caustic chemical.

Tidal Vision is getting ready to process the chitosan so that it can be turned into antibacterial yarn and fabric. One of the byproducts of its extraction process is an 8 percent nitrogen organic fertilizer, which the company is also working to bring to market.

Kasberg is part of a growing group of seafood industry entrepreneurs moving beyond fertiliser and fishmeal to upcycle the seafood industry’s waste in innovative new ways.

“Seafood is a tight margin business, so anything that can be done to reduce waste will help profitability,” says Monica Jain, founder and director of Fish 2.0, a pitching competition for sustainable seafood entrepreneurs. Finalists get exposure to potential investors and can win cash prizes. One of the winning startups at last month’s event in Silicon Valley offers a way for aquaculture farmers to turn their fish waste into algae.

SabrTech, based in Nova Scotia, Canada, took two years to develop a system called the RiverBox. Housed within a standard shipping container – picture a walk-in closet with shelves along one wall – it contains up to 10 tiers where algae grows. “Farmers pump the water [from their fish pen] straight into the RiverBox,” explains SabrTech founder and CEO, Mather Carscallen, who is finishing his PhD in ecology.

Algae grown in the RiverBox

Algae grown in the RiverBox. Photo courtesy SabrTech

The algae growing on each tier acts as a bio-filter to purify the water, according to Carscallen, by removing nutrients – such as nitrogen and phosphorous – which the algae uses to grow. The water then goes back into the fishing pen and farmers can harvest the algae to use as fish feed or for other applications (such as biofuel, fertiliser or industrial clean-up). This, says Carscallen, creates a closed-loop aquaculture system.

Another Fish 2.0 competitor focused on waste is HealthyEarth, based in Sarasota, Florida. The company is in the process of transforming the traditional mullet fishery in Cortez, a small Gulf coast fishing village considered to be one of the oldest in the US.

“Mullet is wild caught in the Sarasota area near Tampa Bay,” says Christopher Cogan, CEO of HealthyEarth, who is a longtime entrepreneur with an interest in impact investing. “But because the fish is prized for its roe [fish eggs], the rest of it is thrown away.” Last year, HealthyEarth initiated a FIP (fishery improvement process) as a way to formally set in place sustainable policies and practices for the mullet fishery. It collaborated with Florida’s Fish and Wildlife Service, the Mote Marine Laboratory (an independent marine research institution), and local mullet fishermen to help shape the process.

In order to give fishermen financial incentive to sell more than just mullet roe (a delicacy known as bottarga), HealthyEarth wants to build an $11m processing plant that can process the roe, extract omega 3 fish oil and process the carcasses into fish meal or fish feed. The two existing local processing plants only have technology to cut the roe out, Cogan says.

HealthyEarth plans to give local fishermen the opportunity to have shares in the processing plant. Cogan says the business should pay for itself once 20 to 30 fishermen come on board. “We want to give the local guys, who follow [the FIP] rules, equity in the business,” he says. “We’ll pay them premium for the roes and the fillets.”

New startup hopes to develop faster-growing crops

Modern Farmer | Nov. 10, 2015

BioConsortia Photo of plants being tested in various soils

Inside BioConsortia’s research facility, where plants are being tested in a variety of soils. (Photo credit: BioConsortia)

We talked with BioConsortia, an agricultural biotech company headquartered in Davis, Calif., that’s using a recently patented way to identify the specific combination of plant microbes to help improve crop yields in corn, wheat, and soybeans. It says that by 2017, it will be able to commercialize its first seed treatments containing the microbe combo that would enable a plant use less fertilizer yet get comparable yields.

The technology seems like what a plant breeder might do if collaborating with a microbiologist on speed.

One skeptic points out that it can be difficult to grow and mass produce such a group of microbes in the lab, so it’s not a done deal. Other companies—such as Novozymes and Monsanto—are also working with microbes. If it all pans out, it could change the face of agriculture as we know it by providing farmers with a natural alternative to genetically modified corn, soy, and wheat.

The process, dubbed Advanced Microbial Selection (AMS), inspired Khosla Ventures to invest millions in two rounds of BioConsortia’s R&D funding over the last four years. AMS scouts out each crop’s “dream team” of five to seven microbes, or microscopic organisms, that work together to boost a plant’s growth. (These microbes live both within the plant and in the soil.)

The technology seems like what a plant breeder might do if collaborating with a microbiologist on speed.

“It turns the traditional model—where microbiologists test microbes one by one—on its head,” says BioConsortia’s CEO Marcus Meadows-Smith. A serial biotech executive with a background in business and genetics, Meadows-Smith joined BioConsortia after a stint as the head of Bayer’s biological pest management division.

Here’s how the process (which was just patented last month) works, according to Meadows-Smith: First, scientists seek out the best-performing plants living in a variety of soil environments around the world, including ones stressed by drought, desert, cold, and wet conditions. Then they conduct DNA sequencing of the plants and the soils to determine what kinds of microbes are present.

Next, back in Bioconsortia’s California growth chambers, they root these plants in their original soils, then into normal and stressed soils. After observing which plants are thriving and which are faring poorly, they conduct another DNA sequencing round in the plants and the surrounding soils. The purpose is to identify all of the microbes hanging around. Some help to speed up growth by making nutrients more accessible, while others can defend against pathogens that might be present. (Think of the group as being there to help and protect—like a celebrity entourage of personal assistants and bodyguards.)

By looking closely at that entourage of microbes (collectively known as the plant’s microbiome), and comparing which specific microbes are present in the plants that are doing well with the ones those that are faring the worst, BioConsortia says it can nail down each crop’s “dream team” for each soil environment tested.

“We’re looking for that unique combination to keep the plants healthy—even with the ability to recover from drought and staving off the effects of a pathogen,” Meadows-Smith said. “The beneficial microbes have not been documented over the years, compared to the pathogens.”

To date, the company has performed experiments on corn, soybeans, and wheat. It’s in its second year of independent/third-party field trials that are testing the seed treatments (comprising the microbial “dream teams”) it has manufactured for these crops.

But even though Meadows-Smith says that the first year of field trials show that its approach increases yield by 6 percent (compared to an average of an <2 percent increase in yield for a genetically modified or hybrid approach) and a double-digit increase in stressed crops, he declined to show results or provide more details to Modern Farmer, citing confidentiality agreements.

Meadows-Smith says that the improved varieties include corn that produce greater yields, utilize fertilizer more efficiently, and are more drought tolerant, as well as wheat and soy that produce more. In the coming months, BioConsortia will start field tests for tomatoes and leafy vegetables.

“Using microorganisms is definitely the way of the future as it’s more environmentally sustainable [compared to using chemicals],” says Kari Dunfield, a professor of soil ecology at Ontario’s University of Guelph, who studies how agricultural practices affect microbial communities in soils. “The approach makes sense, as we know that microorganisms interact with each other and are synergistic.”

But the expert does express some reservations about BioConsortia’s process. “We know that it’s still really hard to grow those organisms in the lab, so that step will be tricky,” Dunfield says. “It’s one thing to know what organisms are there with the DNA, but when you have the DNA you don’t have enough to grow the organism, so that’s the rate-limiting mechanism.”

She also points out that since microbes are living organisms, they’re unpredictable—which adds a more complex aspect to production compared to working with chemicals. “When you’re selling a mixture [of microbes], you have to make sure they’re not outcompeting each other when you sell it to the farmer.”

A few years from now, Meadows-Smith wants to use Advanced Microbial Selection method to address food security for a growing world population.

But Meadows-Smith insists that BioConsortia’s approach could save millions of dollars. He says it takes $25 million to bring a microbial seed treatment to market, $60 million to do the same for a biopesticide (due to the global registration process), and $135 million for genetically modified trait (according to Peter W.B. Phillips, a professor of public policy at the University of Saskatchewan).

Advanced Microbial Selection can also speed up the research phase, Meadows-Smith claims, so products can get to market in about five years, compared to DuPont’s estimate of the 13 years it takes genetically modified crops to get to market.

“There is a long R&D phase [for GM crops], followed by field trials, field multiplication, and registration,” he said.

Meadows-Smith says that scientists first came up with the idea five years ago at BioDiscovery (BioConsortia’s subsidiary company in New Zealand) while conducting contract research for companies like Syngenta, Monsanto, and Bayer. “They had brainstorming sessions to find ways to improve the speed and efficiency of their discovery process,” Meadows-Smith said. “It was to this end that they had the breakthrough to think of this as a plant phenotype (or plant breeding question) and solution rather than a microbial question.”

He cites more dramatic numbers: The company screens 100,000 microbes in nine months, he says, while a conventional approach would take three to four years.

BioConsortia wants to sell the microbial seed treatments (which are applied directly to the seed) to distributors. If all goes well with the second year of field trials, Meadows-Smith says that a biofertilizer seed treatment—one that would need less fertilizer for comparable yields—will be commercialized by 2017.

But he doesn’t think the approach will necessarily replace other methods—such as genetic modification—across the board.

Currently, the company is focusing on the in the European and North American market. Next, Meadows-Smith says he wants to expand BioConsortia’s efforts to Latin America, Brazil and Argentina.

And a few years from now, he wants to use Advanced Microbial Selection method to address food security for a growing world population—something that’s projected to be a problem in the coming decades given stresses on the environment including drought, lack of arable land to grow sufficient amounts of food, environmental pollution, and climate change.

Meadows-Smith says that BioConsortia’s approach can develop crops that can create more harvestable yield, deposit more protein into wheat, or select for a microbiome that will improve the sugar content of plants.

“A few years from now we’d like to work on [applying this to] cassava, a staple carbohydrate for many parts of Africa,” he said.

Why Singapore won’t be going thirsty

TakePart/Participant Media | Nov. 5, 2015

Singapore's Marina Barrage reservoir

Singapore’s Marina Barrage reservoir. Photo credit: Public Utility Board, Singapore

In just 10 years, two out of three people will be living in a country that’s struggling to meet demand for water, according to the United Nations. But even though Singapore has no aquifers or lakes, it’s unlikely that nation’s 5.5 million residents will be among the world’s thirsty.

That’s because the small island nation, which consumes 400 million gallons daily, has a water strategy that is arguably one of the most successful in the world.

“We have four national taps,” George Madhavan, the spokesperson for Public Utility Board, Singapore’s government agency in charge of water quality, conservation, and supply, said during a recent Meeting of the Minds urban-sustainability conference in California.

The “taps” flow from desalinated seawater, recycled wastewater, water collected from rainfall, and an imported supply from neighboring Malaysia.

Having a reliable source of water has always been on the government’s agenda, Madhavan said.

“Without secure and reliable access to water in Singapore, business will not come,” he said. “So that’s a top priority to get a bigger piece of the pie.”

The push to develop a mostly self-sufficient water supply has been credited to Lee Kuan Kew, the country’s first prime minister, who took on the task in response to water shortages in the 1960s and ’70s.

It wasn’t a quick fix. It took 30 years to put the system in place.

Singapore NEWater visitor museum

The NEWater visitor museum in Singapore. (Photo credit: Public Utility Board, Singapore)

The PUB water agency says its “jewel” is the ability to recycle used water, or wastewater from sinks and toilets, into what it calls NEWater. The NEWater purification process, which Singapore launched in 2003 (after getting tips from the Orange County Water District’s wastewater-recycling plant in Southern California), meets 30 percent of daily water demand. While the recycled water is mainly used for industrial purposes, it also replenishes the country’s 17 reservoirs.

Recycled water can also supply water for drinking and cooking. According to PUB, NEWater has passed 130,000 scientific tests and exceeds the drinking water standards set by the U.S. Environmental Protection Agency and guidelines issued by the World Health Organization.

Here’s what happens: The wastewater travels through a network of deep tunnel sewer pipes, then goes through conventional treatment at a sewage treatment plant. It’s then either returned to the sea or sent to one of the country’s four NEWater plants for further purification, depending on demand.

The NEWater plants follow a three-step process. First, membranes filter out small particles such as solids and bacteria. Next, reverse osmosis takes out larger contaminants. Last, the water is disinfected with ultraviolet light and hydrogen peroxide.

But Madhavan said the government knew a large part of successfully integrating recycled wastewater to its supply hinged on whether Singaporeans would want to drink it in the first place.

“The difficult part isn’t the technology,” he said. “It’s getting the community to embrace recycled water.”

NEWater

Bottles of NEWater filled with Singapore’s purified wastewater. (Photo credit: Public Utility Board, Singapore)

To do that, the country had to get rid of the “yuck” factor. For its NEWater branding campaign, it bottled the recycled water with a label featuring a cartoon water drop with a gigantic grin—and constructed a slick visitor center showing how the purification process works via games and interactive exhibits. The water agency also brought reporters to the Orange County Water District’s water-recycling plant, as well as to one in Scottsdale, Arizona.

Another quarter of Singapore’s daily demand is met by its two desalinization plants, which together can process 100 million gallons a day. Because the plants are energy-intensive, the country is experimenting with electrodeionization, a process that consumes less power.

The third tap comes from rainwater collected from drains, canals, rivers, and storm water collection ponds. (Residents aren’t allowed to harvest water without the government’s permission.) In combination with water imports from Malaysia, the rainwater fulfills the remaining 45 percent of Singapore’s daily water needs.

PUB is preparing for a projected doubling in demand by 2060. (Singapore’s water agreement with Malaysia is set to expire in 2061.) The agency says it’s on track to triple its NEWater production and build two new desalinization plants that together will meet 80 percent of demand in 2060.

Madhavan said Singapore thinks about water in a different way.

“You don’t want to drain it—you want to collect it,” he said.

 

Does eating organic reduce pesticide exposure?

Kale at Pescadero Farmer's Market

Veggies for sale at the Pescadero Farmer’s Market. (Photo credit: Kristine Wong)

Civil Eats | Nov. 3, 2015

When parents spend the extra money to feed their children organic food, it’s often in hope of keeping the overall amount of pesticides in their bodies to a minimum. (If you’ve seen this popular video of the Swedish family that made the switch, you know what we’re talking about.) But a new study by a team of scientists at the University of California, Berkeley suggests that diet is only part of the equation, especially for kids who might be exposed to insecticides at home or pesticides from agricultural fields nearby.

Researchers fed 40 Mexican-American children in Salinas (a rural agricultural area) and in Oakland, California a diet of conventional fruits and vegetables for four days. Then they fed the kids (between the ages of three and six and 20 in each group) a week-long diet of organic produce before returning them to a conventional diet for the last five days. The researchers tested the children’s urine daily for the presence of insecticides and herbicides.

Overall, the results showed that the presence of two kinds of pesticides (organophosphate insecticides and the herbicide 2,4-D) in the children’s bodies decreased after eating organic produce (by 40 and 49 percent in the insecticides and by 25 percent in the herbicide).

But researchers didn’t detect any decrease in the levels of other pesticides (such as pyrethroid insecticides like home bug sprays), according to the paper published recently in the journal Environmental Health Perspectives.

“That could mean that the diet wasn’t an important source of exposure for those pesticides,” Asa Bradman, a researcher at Berkeley’s Center for Environmental Research and Children’s Health who led the study, told Civil Eats.

The study results, he emphasized, point to the importance of considering the cumulative amount of pesticide exposure levels in children from other sources when considering the greater health risks (such as lower IQs or delayed development) to this population—especially those living in areas where pesticides could be applied to farm fields or to areas nearby their schools or homes.

“The Salinas children generally had higher concentrations of pesticides than those living in Oakland,” said Bradman.

Pesticide use near California schools could be a significant factor, as documented by a state health department report last year. It found that Latino children were 46 percent more likely to attend schools with “pesticides of concern” applied nearby than other kids in the state.

Bradman’s previous research found that because several farmworker families often live together in one apartment or house, crowding occurs that can lead to pest infestations and increased pesticide use at home.

The Berkeley study is the first to look at the effects of an organic diet among a Mexican immigrant population and test the effect on insecticide levels. Other studies at Harvard looked at the effect of an organic diet on organophosphate pesticide exposure and found similar results.

“Any results like this are really valuable because there’s so little known when it comes to dietary exposure and pesticide residues,” said Emily Marquez, a scientist at the nonprofit advocacy group Pesticide Action Network. “We also don’t know about how exposure changes due to cultural differences in diet.”

While the Centers for Disease Control asks a sample of the U.S. population about exposure to chemicals in the environment ever year, Marquez says, it’s not clear whether respondents live in urban or agricultural areas. And though FDA and USDA test pesticide levels in food annually, she added, much of the focus is on imported produce.

California is the only state in the U.S. that requires the reporting of pesticide use (though the island of Kauai in Hawaii has a voluntary reporting system that could be expanded statewide later this year). Now the state is moving forward to regulate the application of pesticides near schools. The California Department of Pesticide Regulation, which gathered input this past summer from the public on how it might approach setting these limits, is planning to release draft regulations in December.

Parents and community groups are pushing for a one-mile buffer zone around schools, as well as two-day notice before any pesticides are applied, the Los Angeles Times reports.

And in Iowa, a coalition of farmers and the Pesticide Action Network are trying to get laws introduced that would improve reporting and regulations around pesticide drift.

Despite all of the talk regarding children’s health and safety when it comes to pesticide exposure, both Bradman and Marquez are quick to say that they don’t want to discourage children from eating conventional produce if their families can’t afford organic fruits and vegetables.

“When considering risk from exposure, I wouldn’t say that conventional foods are unsafe,” he added. “If you look at the American diet, there’s definitely great need for more fruits and vegetables and less refined carbohydrates.”

But that doesn’t mean it’s not worth reducing pesticide exposure overall. And Marquez says her organization is working toward that end.

“We can change the agricultural system so that it’s no longer dependent on pesticides,” she said. “One way to do this would be to subsidize farmers to help them convert their land—by improving biodiversity and creating a conservation wetland, for example. That will help them begin to transition away from pesticides.”

Coal barge sinks in world’s largest mangrove forest

TakePart/Participant Media | Oct. 30, 2015

Sundarbans mangrove forest in Bangladesh

The mangrove forest in Bangladesh’s portion of the Sundarbans. (Photo credit: Amio James Ascension/courtesy of Creative Commons)

A cargo barge carrying 570 tons of coal in Bangladesh has sunk in the world’s largest mangrove forest.

The Sundarbans, a UNESCO World Heritage Site, is home to endangered species such as the Bengal tiger, the Irrawaddy and Ganges dolphins, sea turtles, and the estuarine crocodile.

Tuesday night’s incident, which took place on the Poshur River, is the third spill in a year in the Sundarbans, which straddles the border with India. Last December, a ship spilled nearly 93,000 gallons of oil into a river in the Sundarbans after colliding with a cargo vessel, an incident that the Bangladeshi government called an ecological catastrophe. In May, a cargo loaded with fertilizer capsized in another river in the Sundarbans.

“In a worst-case scenario, it can cause fish kills and impact endangered fish species,” Donna Lisenby, a staffer with the international environmental organization Waterkeeper Alliance, said of the coal spill. “When a ship or barge loaded with coal sinks, it has big diesel fuel tanks that power the engines, batteries containing lead acid, and hydraulic fluids that all go underwater.”

She noted that coal contains heavy metals such as arsenic, cadmium, chromium, lead, and mercury that can contaminate the river.

Local news outlets have reported that the ship’s captain and nine sailors were rescued.

Lisenby said local Waterkeeper affiliates who arrived at the scene the morning after the incident told her they did not witness any action taken by the Bangladeshi government or by the company that owns the ship.

“They were there throughout most of the day on Wednesday and didn’t see any buoys or lights to warn other vessels where the ship had sunk,” she said. “They didn’t see any cleanup or any oil response vessels either.”

One media outlet has reported that the government has formed a committee to investigate what happened and assess the incident’s impact on the mangrove forest.

It’s not clear what caused the ship to sink.

Lisenby said the incident underscores the need to fight the Bangladeshi government’s plans to build a 1,320-megawatt coal-fired power plant at the edge of the Sundarbans.

“If the proposed Rampal coal plant is not stopped, it will result in an exponential increase in coal barge traffic through the Sundarbans,” Sharif Jamil, a leader of BAPA, Bangladesh’s largest environmental organization, said in a statement. “This incident shows that current safety precautions governing boat traffic through the Sundarbans are not sufficient to prevent accidents that put tons of fossil fuel pollutants in the water.”

Lisenby, who visited the Sundarbans in May, said that more than 4.7 million tons of coal needed to fuel the power plant annually would have to be transferred by hand from large barges to smaller boats, because the rivers leading north to the proposed project site are too shallow to handle larger vessels.

Bangladesh, which signed an agreement with the Indian government to build the power plant three years ago, released an environmental impact assessment for the project in 2013. Lisenby said that although the assessment contained more than 30 issues that needed to be addressed, the government has moved forward with the project.

Three companies submitted bids for the power plant’s construction. Last month, the Bangladeshi government told the Dhaka Tribune that it plans to award the contract in January 2016.

Waterkeeper Alliance wants UNESCO to place Sundarbans on the list of endangered World Heritage Sites.

“The government responsible for protecting it isn’t doing its job,” Lisenby said.

Using nature’s designs to transform agriculture

The Guardian US/UK | Oct. 30, 2015

Jube insect catcher

A team of Thai designers developed Jube, an insect catcher that mimics the structure of the carnivorous pitcher plant. Photo credit: Pat Pataranutaporn/courtesy of the Biomimicry Institute.

From lab-grown burgers to farms monitored by sensors and drones, technology lies at the heart of many of today’s sustainable food solutions. Now, the Biomimicry Institute, a Montana-based nonprofit, is taking the trend a step further with its new Food Systems Design Challenge, encouraging a cadre of entrepreneurs to improve the food production system by emulating techniques and processes found in nature.

At the SXSW Eco conference earlier this month, the institute announced the eight finalists in the challenge. “We want to help foster bringing more biomimetic designs to market … to show that biomimicry is a viable and essential design methodology to create a more regenerative and sustainable world,” said Megan Schuknect, the institute’s director of design challenges.

Just as natural processes often benefit multiple stakeholders, many competitors in the challenge are seeking to solve multiple problems. BioX, a finalist team from Bangkok, hopes to increase food security while helping users secure a steady source of income.

On the outside, BioX’s product, Jube, looks like a decorative hanging vase. Inside, it’s a bug trap that catches protein-rich edible insects. Lined with inward-pointing hairs that move insects downward and keep them from escaping, it mimics the structure of a pitcher plant.

“The product is designed to be artistic and crafted so that people in any community can make it and sell it to other people as an alternative source of revenue,” said Pat Pataranutaporn at the SXSW Eco Conference. Each vase is decorated with multicolored patterns designed to copy the plants’ mix of mottled colors. “We believe that we can spread biomimicry through culture and art,” Pataranutaporn said.

Easing into commercialization

By 2030, bioinspired innovations could generate $1.6tn of GDP worldwide, according to a 2013 report from Point Loma University’s Fermanian Business and Economic Institute. Another report from sustainable design firm Terrapin Bright Green, found companies that use biomimicry can reap greater revenues and have lower costs than those that don’t.

For years, large companies have increasingly employed biomimicry to solve difficult engineering challenges. Qualcomm’s Mirasol electronic device display imitates the light-reflective structure of a butterfly wing and uses a tenth of the power of an LCD reader, while Sprint worked with the San Diego Zoo’s Center for Bioinspiration to design more environmentally friendly packaging.

But developing biomimetic designs could be a steeper challenge for smaller companies. Tech startups have an estimated 90% fail rate, and biomimetic companies are no exception.

“Bioinspired innovation faces the same challenges as other forms of innovation – years of research, design and development, financial risk and market acceptance,” Terrapin Bright Green spokesperson Allison Bernett told the Guardian. “As they face increasingly rigorous testing and financial constraints, fewer technologies progress into the prototype and development stages, a typical pattern in product development.”

However, Bernett added, biomimetics can reduce the costs and difficulties of development. “Extensive prior research, a thorough understanding and a functioning model – with the living organism providing the ‘blueprint’ – can benefit a technology’s development costs by speeding up the R&D process,” she said.

The lessons of biomimicry could even extend to market politics. Portland-based business advisor Faye Yoshihara said that the disruptive nature of bioinspired products can be seen as a threat to entrenched competitors’ interests. “Market entrants need to identify mutually beneficial ways of working with industry players and points of entry into an ecosystem,” she told the Guardian.

Alternately, Yoshihara suggested, biomimetic firms could imitate the protected environments that encourage weaker species. “Innovators must sometimes create their own ecosystems to get their product or service to market,” she said.

With that in mind, the Biomimicry Institute has developed a business accelerator to help the competition’s finalists move their designs from the concept phase to the pre-commercialization stage. Over six to nine months, the program will give qualifying companies training and mentorship from experts such as Yoshihara.

Six-sided efficiency

Hexagro, another challenge finalist, has combined agriculture with the design genius of one of nature’s most famous structures. A modular aeroponic home-growing system, it is made up of individual hexagon-shaped bins that are inspired by bees’ honeycombs.

Designer Felipe Hernandez Villa-Roel wanted his product to circumvent some of the environmental problems associated with large scale agriculture, such as carbon emissions, pesticide use and fertilizer runoff. His solution was to make it easier for people living in small urban spaces to grow pesticide-free food at home.

“I wanted to solve this problem as efficiently as possible,” he said. “And since many people can’t spend the time to garden, it needed to be something that wouldn’t take up a lot of personal time.”

The bins – which can grow lettuce, carrots, cilantro, spinach, herbs and even potatoes – evoke the resource efficiency of a beehive. They can be stacked to fit any available space. And, because the plants’ roots are in the air, they can be misted with a nutrient solution placed on an automatic cycle. Hernandez Villa-Roel claims that his pods can cut down water use by 90% compared to traditional farming.

The designer hopes that Hexagro could help decentralize food production and provide an economic opportunity for growers, who can sell their excess produce. He envisions a community of growers and distributors bringing locally grown produce to market, cutting down on the CO2 emissions commonly associated with food transportation.

“This system could also be used in Syrian refugee camps to grow food, or with the disabled or elderly,” he said. “The social consequences of this project are much greater than the project itself.”

Taking it underground

A team of students from the landscape architecture department at the University of Oregon in Eugene designed the Living Filtration System, an agricultural tool that imitates filtration processes used throughout nature. Designed to reduce fertilizer and chemical runoff from farms, the system is a new spin on traditional tile drainage systems designed to remove excess moisture from the surface of the soil.

“A [drainage] pipe made out of renewable material that mimics an earthworm’s villi to slow down runoff is one of the major components,” said Wade Hanson, a member of the team.

The students say that their drainage system also incorporates the mechanism used by wetlands to filter pollutants from water. Next fall, they will join the seven other finalists when presenting their prototype to judges in a final round. Teams will be evaluated based on a number of criteria, including proof that their technology works, the feasibility of bringing their product to market and validation that it provides a solution that customers will use.

The winner will take home $100,000 in prize money provided by the Ray C Anderson Foundation. It’s not clear if that will be an adequate sum for the winning team to develop their concept, considering the several years it usually takes to get a product on the market.

Still, Schuknect is optimistic. “Looking to nature for inspiration on how we live on this planet is essential to our future,” she said.

“The more we can expose both professionals and young people to the power of looking to nature and the power of biomimetic design, the sooner we’re going to get to a place where we are all working towards developing elegant solutions that support the needs of all life on the planet.”

Kids create street art that generates solar power

TakePart/Participant Media | Oct. 23, 2015

"Renaissance Gate" - Solar public art installation in Pittsburgh, Penn.

The “Renaissance Gate” is a solar public art installation in Pittsburgh, Penn. designed by youth in the city’s Homewood neighborhood. (Photo credit: Land Art Generation Initiative)

Pennsylvania’s coal industry may be in decline, but in one of Pittsburgh’s toughest neighborhoods, a solar project could become a symbol of a brighter future.

Since August, Homewood residents have walked through the Renaissance Gate—a public art and solar installation built and designed by local youths during a six-week summer camp—and seen the Western Pennsylvania sun power their cell phones and light up the community center next door.

“The idea of a ‘Renaissance Gate’ is a passageway through which visitors can walk from the old Homewood into a Homewood of the future—a place of prosperity and opportunity for those who call it home,” said Elizabeth Monoian, cofounder of the Pittsburgh-based Land Art Generation Initiative. The group sponsored an Art+Energy camp designed to teach young people about the social, political, environmental, and aesthetic aspects of energy production.

The 17 red, yellow, and orange solar panels are mounted atop the gate in a configuration mimicking the symmetry of a flower. The installation can produce enough electricity to power the lighting at the Homewood Renaissance Community Center through a hookup to its electrical meter. Two panels connected to a battery provide power for cell phone charging. The community center also receives a credit on its electricity bill by selling the energy that it doesn’t use to the local utility.

The 20 students enrolled in the camp learned about Western Pennsylvania’s deep roots in coal production and visited a local coal-fired power plant.

The Homewood Renaissance Association, which runs the community center, served as the link with the greater neighborhood community.

“All applauded the initiative to bringing solar energy to the neighborhood and loved that it was local kids leading the effort,” said Robert Ferry, LAGI’s other cofounder.

With only six weeks to complete the project, it was a race to the finish, according to Monoian, who said the team completed the detailed design drawings in the fourth week and sent them to a fabricator a week before the installation.

“We pulled it off, but it took some long nights and some good fortune,” she said.

Ferry said he hopes the Renaissance Gate will be a catalyst for the area’s transformation.

“Energy democracy is a critical issue that must be addressed in neighborhoods such as Homewood,” he said. “Why aren’t there more solar installations in neighborhoods that could benefit greatly from them? We hope that the impact goes beyond Homewood and Pittsburgh to ignite a conversation about both our visual landscape in all neighborhoods and in the usefulness of distributed energy systems for empowering historically disadvantaged communities.”

How one company is feeding farms with food waste

Civil Eats | Sept. 21, 2015

California Safe Soil takes supermarket food waste and turns it into farm fertilizer. (Photo credit: California Safe Soil).

California Safe Soil takes supermarket food waste and turns it into farm fertilizer. (Photo credit: California Safe Soil).

You don’t have to dumpster dive to know that supermarkets send a steady stream of uneaten food to landfills.

Once there, the waste does more than smell bad. It also contributes to climate change by emitting methane, a greenhouse gas that is around 30 times more potent than carbon dioxide. In fact, landfills are the third largest source of methane emissions in the U.S., according to the Environmental Protection Agency (one reason the USDA recently pledged to reduce food waste 50 percent nationally by 2030).

But when a new California state law [PDF] goes into effect this April, large grocery stores in the state will be required to ditch the landfill and compost or recycle their food waste instead.

In order for supermarkets to comply with the impending law, they’ll need more places to put the waste—and one Sacramento-based company appears to be well positioned to respond to this problem. California Safe Soil has developed a process that transforms truckloads of supermarket food waste into farm-ready fertilizer it calls Harvest to Harvest, or H2H.

“This was something that made perfect sense to me,” says CEO Dan Morash, who founded the startup in 2012, after leaving a career as an investment banker in the energy sector. “There’s this huge stream of waste from the supermarkets that is no longer safe to eat as it gets to the end of its shelf life, but it still has a lot of nutrients.”

Using fertilizer made from food waste also cuts down on the need for synthetic nitrogen fertilizer, he adds, which can reduce the amount of nitrate runoff into local rivers and streams, which often lead to dead zones.

The company claims that since its launch in 2012, it has diverted over 2.2 million pounds of food waste from the landfill, preventing the emissions of 3.2 million pounds of greenhouse gases and preventing the need for over 1.1 million pounds of nitrogen fertilizers.

Final Liquid Fertilizer ProductHow is Morash’s product different from standard compost? He worked with soil and fertilizer specialist Mark LeJeune to develop a method that fast forwards the composting process (which is fueled by aerobic digestion, or bacteria fed by oxygen that breaks down organic matter). The process turns food waste into liquid fertilizer in three hours.

First, the food is ground down into a liquid, then treated with enzymes to break down the protein, fat, and carbohydrates into the amino acids, fatty acids, and simple sugars. Then, it’s pasteurized (that is, heated at high temperatures) to kill any pathogens that might be present.

“The average particle size is very small—26 microns,” Morash says. “This [enables it to] mix easily with water.”

There’s a separate stream for organic and conventional food, as California Safe Soil sells an all-organic version. Both are applied to the crops via drip irrigation.

In 2012, Morash and LeJeune opened a pilot plant in Sacramento to develop the technology. The product was commercialized in 2013 and is regulated by the California Department of Food and Agriculture.

“The California Department of Food and Agriculture is concerned about food safety, so we had to prove that [the fertilizer production process] eliminates pathogens,” Morash says. “So we did a research project called a challenge test at the University of California, Davis.”

To show that the product was effective, the company conducted additional experiments with researchers, including one at U.C. Davis and a strawberry expert at U.C. Cooperative Extension.

Morash claims that use of his fertilizer on tomatoes has upped the rate of food production by between 10 to 15 percent.

California Safe Soil’s target market is mainly large farms that grow crops like strawberries, tomatoes, leafy greens, almonds, and wine grapes. Several of the berry growers that he works with supply for Driscoll’s, Morash says.

Broccoli TrialBut orchard crops like fruit and nuts are especially well suited for this liquid fertilizer. Traditionally, orchard-based farmers “need to till the soil to get organic matter in without cutting up the roots,” he says. “So the ability to deliver organic matter to the soil in liquid form is a big positive.”

At the moment, the company processes food waste from 15 stores across five supermarket chains (Grocery Outlet, Nugget, Safeway, SaveMart, and Whole Foods) in Sacramento. Six days a week, the plant processes about 3,750 pounds of food from between seven to eight markets a day (each brings in an average of about 500 pounds daily).

The Sacramento facility is operating at capacity, but he hopes to build others in the coming years. The idea is to locate plants, like the one Sacramento, near grocery distribution centers. This way, after delivering goods to the stores, the centers’ trucks can fill up with food waste for the trip home, Morash says.

There are additional economic and environmental benefits to locating California Safe Soil plants near distribution centers, he adds. Turning food waste into fertilizer not only saves grocery stores the fees associated with sending it to a landfill, but it also prevents the greenhouse gas emissions and extra transportation costs often needed to deliver it there.

“This has a very positive environmental impact across the board,” Morash says. “It’s going to increase the sustainability of agriculture starting right here in California.”

Photos, from the top: Employees moving wasted produce into the processing machine; the final liquid fertilizer product; broccoli from a farm trial with the control on the left and the H2H produced product on the right. All courtesy of California Safe Soil.

Farms without wildlife don’t produce safer food

Civil Eats | Aug. 11, 2015

Lettuce crops

Lettuce crops. (Photo credit: Suzie’s Farm courtesy of Creative Commons)

 

Most leafy green lovers probably remember the moment when they became suspicious of spinach.

In 2006, an E. coli outbreak that killed three people and sickened about 200 more was traced to the cool-weather crop growing along California’s Central Coast. Despite the fact that federal and state investigators claimed it was not possible to determine exactly how the dangerous E. coli strain spread to the farm, cattle and wild pig manure were implicated as the sources of the bacteria.

The following year, the state’s farming industry pushed out the California Leafy Greens Marketing Agreement, a set of recommended practices based on previous guidelines issued by to U.S. Food and Drug Administration (FDA) to promote food safety on farms. Though voluntary, it covers over a dozen salad fixings (think spinach, arugula, kale, and several types of lettuce) and has since become widespread throughout the nation.

Simultaneously, many produce buyers began asking growers to clear areas near fields of any vegetation. As a result, the farm fields along the California coast changed radically after the outbreak, as farmers did away with wooded areas, medians, and hedgerows, and most farms became relatively sterile landscapes, aside from the crops.

Now a new study [PDF] is calling the efficacy of that practice into question.

“The bottom line is that removing habitat around farm fields is ineffective at making food safer from pathogens,” said Daniel Karp, a U.C. Berkeley postdoctoral researcher whose work is funded by The Nature Conservancy. “It has been shown in this region that there are a lot of benefits to surrounding vegetation as well, such as providing a home for pollinators, which are declining across the nation.”

The research—which was published yesterday in the journal Proceedings of the National Academy of Sciences (PNAS)—used three sets of industry data from 2007 to 2013 and mapped the results of 236,000 tests for E. coli and Salmonella on leafy greens, irrigation water, and rodents on Central Coast farms.

Karp and his collaborators found that among 57 farms in Salinas, Monterey, San Benito, Santa Clara, and Santa Cruz counties—the source of three-quarters of the the country’s leafy greens—the overall frequency of disease-causing strains of E. coli increased in the six-year period. But it turned out the prevalence increased the most where surrounding wildlife vegetation had been cleared away.

In areas that had kept some natural vegetation intact—a fact the researchers verified using aerial imagery—the team also found that the overall presence of disease-causing strains of E. coli and Salmonella did not go up.

Karp says that by looking to California as an example, the study results could have implications for all of America’s 4.5 million acres of farmland where foods eaten raw are grown, and the wildlife habitat that surrounds this land.

“Federal legislation [enacted] in 2011 will give the FDA the ability to regulate farming practices,” he said, referring to the controversial Food Safety Modernization Act that has yet to be implemented. “While it doesn’t require farmers to remove habitat, my worry is that these practices will spread across the nation as buyers will put pressure on their growers and won’t buy from them unless they remove wildlife habitat.”

Screen Shot 2015-08-10 at 9.53.09 PM

The Wild Farm Alliance, a nonprofit organization that advocates for the importance of protecting native species through sustainable agriculture has expressed concern about the dangers of removing wildlife habitat near leafy green crops all along.

Karp points to ways that conservation, agriculture, and livestock can flourish side by side, such as maintaining natural habitat (like trees) as a buffer between livestock and leafy green fields. The vegetation could filter runoff from grazed lands in the soil, he said.

“Or you could plant crops that need to be cooked, like artichokes, corn or wheat,” as buffer between livestock and leafy greens, Karp said.

Another option that could possibly work, he said, is to fence off waterways upstream from leafy green fields in order to prevent wildlife and cattle from defecating in the stream, which might eventually transport the feces downstream.

“We need to talk about how we can manage farming systems that both produce food and livestock and conserve nature at the same time,” Karp said. “We need to think creatively.”

Figure from study: Promising practices include (1) planting low-risk crops between leafy green vegetables and pathogen sources (e.g., grazeable lands); (2) buffering farm fields with noncrop vegetation to filter pathogens from runoff; (3) fencing upstream waterways from cattle and wildlife; (4) attracting livestock away from upstream waterways with water troughs, food supplements, and feed; (5) vaccinating cattle against foodborne pathogens; (6) creating secondary treatment wetlands near feedlots and high-intensity grazing operations; (7) reducing agrichemical applications to bolster bacteria that depredate and compete with E. coli; (8) exposing compost heaps to high temperatures through regular turning to enhance soil fertility without compromising food safety; and (9) maintaining diverse wildlife communities with fewer competent disease hosts.

Are small farms in India the key to taking tea organic?

The Guardian US/UK | Feb. 5, 2015

EcoTeas organic tea plantation

Ramesh Babu’s EcoTeas organic tea plantation in Kotagiri, Tamil Nadu, India. Photo credit: Ramesh Babu/EcoTeas

When fourth-generation tea planter Ramesh Babu decided to leave his family’s plantation in the southeast Indian state of Tamil Nadu to start his own organic operation, people called him crazy.

“It was unheard of in our part of the country,” the 54-year-old said of his decision in 2006 to take on 10 acres surrounded by forest in the hill town of Kotagiri nearby. “Initially, when you stop using [chemical] fertilizer you have a big fall in your production, so that’s one major factor which keeps other tea growers from going organic.”

Though rewarding, establishing an organic tea plantation has been challenging, Babu admits. There weren’t any other organic tea planters nearby, so he had to learn everything from vegetable farmers before launching his EcoTeas estate. And because there aren’t many small tea factories in India, he had to design his own processing machinery – a costly undertaking that took seven years. Selling the tea leaves he and his family can’t process or hand-roll on their own was also tough, Babu says, as tea companies pay the same going rate for organic leaves as for conventionally produced leaves.

It’s a lonely road that has left the family-run operation in the red to this day, but it could be an important one. A Greenpeace India report – which has been challenged as “pseudo-scientific” by the tea industry – released in August found that more than 90 percent of the domestic packaged and produced tea contained pesticide residues (pdf).

Yet despite the roadblocks, organic tea production could be moving closer to the norm in a country that produces more tea than any other except China. In the past few months, the two largest tea companies in India – Tata Global Beverages and Hindustan Unilever, which together comprise over 50 percent of the domestic market – announced it would set up pilot studies with the government to test how their growers can phase out pesticide use.

In a statement, Hindustan Unilever said it plans to work with nonprofit agricultural advisor Cabi on the feasibility study and source all of its agricultural raw materials using sustainable crop practices by 2020. The company aims to launch the pilot in April, according to Greenpeace India campaigner Neha Saigal, but it’s not clear when Tata – the second largest tea company in the world (hit in recent years with reports that female workers had been trafficked into domestic slavery from a plantation in Assam) – plans to kick off its program, which also has a goal to achieve sustainable sourcing by 2020.

More details about the pilots aren’t clear, as the companies have remained tight-lipped. (Both declined to comment). But when the largest players in any industry take their first steps towards sustainability, it raises the question: could this pave the way for smaller producers to shift to organic cultivation too?

There’s a huge need to bring down barriers that make it harder for growers to go organic, according to Saigal, whose organization pushed for the pesticide-free commitment, and is now keeping an eye on the companies to implement the pilots. India’s regulations for pesticide use in tea aren’t straightforward or consistent from one jurisdiction to another, nor comprehensive, she says.

“Pesticide regulation in India is in shambles,” Saigal said. “What this shows is that you need a policy level change.”

“Growers aren’t aware of what they are using and what they aren’t using,” she added. “It’s the government’s job to make these small growers aware of what’s toxic and what’s not. It’s their job to create those support systems creating a knowledge base and having a system to transform that knowledge to use ecological alternatives.”

Greenpeace India is in talks with the Tea Board of India – the government-run body with the authority to crack down on these regulatory problems – about setting up a support system for small tea growers so they can move away from pesticides.

In September, the Tea Board (which did not respond to interview requests) issued the second version of its Plant Protection Code that listed the approximately three dozen pesticides approved for use in tea. Yet maximum residue levels had been set for just 10 of them, according to the document.

Government support is needed for organic tea production to thrive in India, Babu says.

“The government of India and the Tea Board have got to come up with a very supportive package for small tea growers,” he said. “This would mean giving subsidies to help small tea growers convert to organic.”

EcoTeas plantation, Kotagiri, Tamil Nadu, India

In direct opposition to the monoculture standard, Babu has not removed the trees that have taken root throughout his EcoTeas plantation. Photo credit: Ramesh Babu/EcoTeas

Babu has his own plan to jumpstart a new generation of organic tea growers in India. He expects his factory to be fully up and running in the next few months, which he believes will improve his financial position, since he’ll be able to produce up to 30 times more tea. Once that happens, he wants to teach other growers how convert to organic growing so he can process their leaves in his factory and start an organic growers association that could foster mutual support and push for higher payments for their leaves.

But Hope Lee, a business analyst who specializes in the hot beverages market for intelligence research firm Euromonitor International, says that small tea growers in India and other developing markets – such as Argentina, the Middle East, China and Kenya – face other challenges beyond their borders.

“They find it hard to export their product to developed markets because they don’t meet strict standards in developed countries,” she said. “Some companies in developing countries don’t have money to hire these expensive services [to test for pesticide levels] and they don’t see the short-term profit from it if they pay a lot of money for testing.”

But it also depends on how serious the national government is in promoting their tea exporting business and how they set their standards, she added.

“So this issue comes to the question [of] if Unilever or Tata have the resources to solve this problem,” Lee said. “Big companies like Twinings or Unilever or Tata – they can influence the government and they have the resources to train their suppliers and make their tea grow in a more sustainable way, but they need the cooperation of the local government,” she said.

Fair-trade and certification programs are used as additional strategies to move industries towards more sustainable practices. Yet Daan de Vries, the markets director at UTZ Certified, an Amsterdam-based organization, says that certification alone is not enough.

“In some places there’s value but it’s not the way to go to change markets,” he said. “Consistently, you’ll see no more than maybe 5% of people who would want to change their buying behavior based on sustainability claims or labels.”

Tea 2030 is an initiative that appears to be taking on a more comprehensive approach. Organized by UK-based nonprofit Forum for the Future, industry heavyweights like Unilever, Tata and Twinings have joined with the Ethical Tea Partnership, Fairtrade and Rainforest Alliance to identify challenges facing the tea industry, such as competition for land, climate change, natural resource constraints and living wage issues. (Starbucks also joined late last year).

A report released by the initiative last year lays out these challenges, along with principles for a sustainable value chain, which the alliance would like to see in action by 2030.

“Of course the individual companies are pursuing their own sustainability [initiatives], such as Unilever and Tata on pesticides,” said Ann-Marie Brouder, Tea 2030’s coordinator. “But there are some problems too big for individual companies to tackle…. We believe that if we’re going to make change, it needs to be owned by the tea sector.”

In the meantime, Babu continues to quietly push forward, all the while tending his tea plants and the trees he’s allowed to intersperse among the crop in direct opposition to the monoculture plantation standard.

“It’s something that cannot be approached in terms of a business,” he said. “It’s a change of the mindset.”

View the original story here.

This stove cleanly burns plastic and charges a phone

TakePart | Mashable | Nov. 14, 2014

KleanCook stove

The KleanCook stove inspired the design for the K2 cookstove. Photo credit: Energant

It’s no secret that the smoke spewing from open fires and from indoor coal-fired cook stoves is a silent killer in the developing world, and a contributor to climate change. More than 4 million people die each year from health problems related to inhaling carbon monoxide or particulate matter released from stoves that burn wood, biomass, or coal, according to the World Health Organization.

Despite a long-running government campaign to eradicate dirty fuels from households, the problem persists in China. But thanks to two young entrepreneurs, a new kind of cook stove—one that can cleanly combust small amounts of plastic trash and convert its excess cooking heat to electricity—could be on its way into kitchens across China.

“Smoke-related illnesses are a bigger issue than malaria or HIV,” said Jacqueline Nguyen, one of the entrepreneurs and a University of California, Berkeley, senior toxicology student. “It kills more than HIV and malaria worldwide per year.”

While Nguyen handles business and marketing for Energant, the company behind the device, her best friend, Mark Webb—a 2011 Berkeley graduate who studied biochemistry—designed the K2 cook stove.

The K2 reduces smoky emissions by 95 percent, according to tests Webb conducted. Using the excess heat created during operations, it can generate enough electricity to trickle charge a mobile phone. It has the ability to burn biomass briquettes cleanly as well.

It can also burn plastic and wood without toxic emissions as long as the material—which emits volatile organic compounds when burned—doesn’t exceed 8 percent of the mass being used as fuel, according to Webb.

The ability to burn plastic and wood cleanly is what distinguishes the K2 model from the KleanCook stove, the product Webb designed last year.

Webb got the idea for the K2 cook stove during pilot testing of the KleanCook model in the Philippines this past summer, when he and Nguyen noticed people cooking food over open fires all across the country—and burning plastic bags as a way to get those fires started.

“We decided to make the K2, which was centered specifically around being able to burn off all of the toxic material from this trash,” Webb said.

K2 cookstove from Energant

The K2 cookstove. Photo credit: Energant

But because the two wanted the cook stoves to generate income for local people who would sell the devices for profit, they decided to target the Chinese market, as business costs in the Philippines were too high.

How does it work, and what differentiates it from other clean cook stoves?

The stove’s built-in fan has a geometric design and resembles the turbo fan of a jet engine. When the fan blows air into the fire, it creates forced convection, which makes the stove more fuel-efficient. Carbon monoxide is then converted to carbon dioxide.

The stove’s greater efficiency means that 50 percent less fuel has to be burned to create the same amount of heat, resulting in lower emissions, according to Webb. A patent is pending on the K2’s design.

The stove also contains a thermoelectric generator. When one side of the device is exposed to heat and the other is kept cool, an electric current is generated as the heat travels from one side of the generator to the other. That electric charge is then fed into a voltage regulator to produce a steady current.

Because it’s made from cheap metal, the stove costs only $16 to manufacture. Energant plans to sell the stoves to regional distributors for $20 to $25. In turn, the salespeople will sell the units at retail for $50—a price that Webb and Nguyen say the Chinese government has deemed an acceptable amount to charge based on disposable income.

The debut of the K2 cook stove could be timely, as recent reports from China indicate there’s been an increase in burning trash and plastic, which releases carcinogenic dioxins.

Webb and Nguyen’s clean cook stove venture attracted support from Berkeley’s Development Impact Lab after the pair won the lab’s “Big Ideas” student innovation contest with the KleanCook stove.

The development lab is one of seven university efforts funded by USAID via the U.S. Global Development Lab. That initiative gives money to seven centers at universities around the country that support students creating solutions to global problems such as climate change, food security, health, and poverty.

“Our whole market approach to the KleanCook was to have the cheapest possible thing that was the most scalable and can deliver electricity for devices,” Webb said.

KleanCook also won prize money from the Clinton Global Initiative University contest this past year, which allowed the entrepreneurs to fund KleanCook’s pilot testing in the Philippines.

Though the K2 cook stove—KleanCook’s more sophisticated sister—appears promising, it isn’t ready for market yet. Webb says Energant has a pre-manufacturing prototype that he’s tested for efficiency using a consumer carbon monoxide sensor that recorded the carbon dioxide output of the stove.

To win the confidence of Chinese consumers, he says K2 needs to be tested using validated equipment—something that Energant would have to pay for specialists to do at Beijing’s Tsinghua University.

The company hopes to raise $30,000 from an Indiegogo campaign to pay for the testing.

View the original story here.

Drought dowsing goes hi-tech

California Magazine | Aug. 11, 2014

Wellntel pilot

Wellntel is conducting its first pilot with farmers and residents in the drought-stricken town of Templeton, Calif. Photo credit: Wellntel

This year, groundwater is serving as California’s pinch hitter, supplying about 60 percent of the state’s needs during this historic drought. But until now, it’s been an impossible resource to manage.

We don’t have enough data to know just how much groundwater is hanging out below any given house or farm. Because it’s unregulated by the state, anyone can pump as much water as they want—a point of contention between those who think people own the water underneath their property and those who believe groundwater is a communal resource. To make matters worse, groundwater hasn’t been replenished during these dry times, and there’s been a recent rush to drill more wells in the San Joaquin Valley.

But while we can’t make it rain on California, nor force the legislature to pass two bills currently being considered that would mandate local governments to regulate their groundwater, new technology is allowing us to better “see”  the water beneath the ground and could help us make smarter decisions about how best to use it.

A recently developed sensor-based device that measures groundwater is helping UC Berkeley researchers understand just how much of this resource we’ll have in the coming decades. Developed by Wisconsin-based startup Wellntel, the product attaches to the top of a well and uses sonar to measure water levels and a well’s pumping rate every 30 minutes, then sends the data to the computing cloud, allowing researchers to make use of it.

In the last few months, geography department professor Norman Miller and recent Ph.D. graduate Raj Singh have started incorporating data from the devices into the computer-based groundwater model they’ve been developing for the last four years. “One of the big problems I see is the availability of water due to land use stressors under climate change,” says Miller, a hydrometeorologist. “So one of the outstanding questions is how much (groundwater) is left on planet, who’s using it, and when. But there’s a lot of water that we can’t see.”

The current problem, the researchers say, is that while satellite data can show how much groundwater there is on a regional level—in the Central Valley, for instance—it can’t capture how much there is under a city, or at the farm level. There just isn’t enough data from U.S. wells to get a deep understanding of how groundwater flows. The predominant techniques used to measure well water levels—measuring tapes or pressure sensors—are labor-intensive and costly. The U.S. Geological Survey monitors less than 10 percent of its 20,000 wells, California’s Department of Water Resources monitors a few hundred.

But by integrating the Wellntel data into their current model, the Cal researchers believe they can provide a deeper understanding of how much groundwater we have now, and how much we’ll have in the future as climate change takes its toll.

“It’s like moving from a black-and-white to an HD television,” Singh says of the difference in resolution—which with the new data has advanced from gathering data at the 10-20 kilometer level down to a 100-meter level. At that resolution, he says it’s possible to discern the land’s topography and groundwater level differences from houses a few blocks apart.

With this knowledge, farmers and landowners could be better equipped to allocate their consumption, plan their growing seasons and save for dry times—not unlike the way we manage our bank accounts.

Wellntel is partnering with Miller and Singh on a pilot research project in Templeton, a town just outside Paso Robles on California’s Central Coast. The area has sprouted a number of vineyards and hobby farms in recent decades after its almond groves turned fallow.

“There’s been a huge increase in vineyard development in Paso Robles, and many residents saw dramatic declines in their water levels and had to dig new wells because the water table dropped,” says Wellntel co-founder Nick Hayes. “And some of the new wells have had to go so deep that they have to tap into mineral and sulfur-smelling water—it’s pretty severe and it feels dire to them, and their property values are tied to water in the area.” Some even have had to truck in their water, Hayes adds.

Every two weeks, Miller and Singh receive data (stripped of any identifiers) from 12 Wellntel sensors installed every half-mile throughout the 9-square mile pilot area.

By assimilating this data into their current groundwater model, the researchers say they’ll eventually be able to predict how groundwater levels will change from season to season over the next few years, as well as over the coming decades based on a range of greenhouse gas emissions scenarios up to 2050.

Miller says it’s not clear right now just when they’ll be able to make those predictions. But the Cal researchers have met several times and shared their model with Frances Chung, the chief of the modeling branch at the state’s Department of Water Resources, and they say the state is interested in making use of the new technology. Such an ability to collect information about groundwater levels could boost the state’s pro-regulation movement.

“If you limit water it has to be based on what you know, and right now it’s extremely difficult to control and monitor,” Singh says. “But as we get more information and it becomes more scientific—and more objective based on facts—it will be easier to regulate.”

View the original story here.

Underground carbon store is a greenhouse gas bomb

TakePart | May 31, 2014

The Arikaree Breaks in northwestern Kansas is home to ancient soils that were covered in loess deposits over thousands of years. Photo by Joe courtesy Creative Commons.

The Arikaree Breaks in northwestern Kansas is home to ancient soils that were covered in loess deposits over thousands of years. Photo by Joe courtesy Creative Commons.

Although most of the attention given to greenhouse gas has focused on the air around and above us, another significant source of carbon could contribute to climate change and has been unaccounted for: soot and fossils buried in soil that formed up to 15,000 years ago.

That’s the conclusion of a new study by researchers at the University of Wisconsin–Madison, who dug as much as six and a half meters below the surface in Kansas, Nebraska, and other parts of the Great Plains to reach ancient soils filled with black carbon and plants that have not yet fully decomposed. These carbon stores could be released into the environment via erosion, road construction, mining, or deforestation.

“It was assumed that there was little carbon in deeper soil,” said Erika Marín-Spiotta, a professor at UW-Madison and a coauthor of the study, published earlier this week in the journal Nature Geoscience. Most soil studies don’t penetrate deeper than 30 centimeters, she said, leading scientists to dramatically underestimate underground carbon reserves.

Only recently have scientists become more concerned about deep soil carbon, Marín-Spiotta said. Her research team believes a situation similar to that which it has documented in the American Midwest may exist elsewhere, such as in China and France. Because such carbon reservoirs in buried soils can lurk in a range of environments—under dust accumulation, in floodplains, in valleys, at the foot of slopes of hills and mountains and under lava flows—they are likely to occur in many other parts of the world.

Just how much carbon are we talking about? While it’s hard to get a global estimate, Marín-Spiotta said as much as 5.95 trillion pounds of carbon could be lurking in the depths of the Great Plains area her team looked at. That’s assuming the ancient soil forms a continuous layer across the region; the researchers were only able to collect measurements from specific points and don’t really know what portion of the region contains the carbon-rich soil, so Marín-Spiotta acknowledges that’s a high estimate.

“The large source of uncertainty is where these buried soils are located, at what depth do they occur, and over what spatial extent,” she said.

How could this giant carbon bomb be released? In some areas, it has already been exposed to the atmosphere. But for the subterranean reserves, Marín-Spiotta believes a number of factors are at work, including how much carbon there really is, how much has persisted since it was buried, and what kind of carbon is down there.

Though Marín-Spiotta says the buried reserves carbon don’t pose an immediate risk to rising CO2 levels in the atmosphere, she notes that land managers need to take precautions, as the researchers found the ancient soils are more reactive than was previously understood. Key among these, she said, would be to “estimate whether there are any [high-carbon] soils at a particular location [and if so] prevent erosion and exposure that would accelerate…release of CO2 to the atmosphere.”

Photo of the Arikaree Breaks in Kansas by Joe courtesy of Creative Commons

View the original story here.

Ready to charge your EV when driving?

TakePart | May 24, 2014

A road lights up in Gothenburg, Sweden. Photo credit: Mats Lindh courtesy Creative Commons

A road lights up in Gothenburg, Sweden. Photo credit: Mats Lindh courtesy Creative Commons

Despite the growing popularity of electric vehicles—U.S. sales almost doubled from 2012 to 2013—fewer than 100,000 Americans drove one home last year. One reason is that it takes longer to fill a battery with electrons than to put gasoline in a tank, and consumers don’t want to wait longer than they’re accustomed to. But what if cars could be charged while driving over a road that can wirelessly transmit grid electricity from cables underneath? Could such technology be the convenience drivers are looking for to make the switch to electric?

A new partnership between Volvo and the Swedish government is trying to chip away at both ends of a catch-22 scenario that’s among the obstacles the concept faces: Nobody wants to pay extra for a wireless-charging feature that can’t be used yet, and no one wants to invest in infrastructure for a fleet of cars that doesn’t exist. Along with the Swedish Transport Administration, the car manufacturer recently announced an effort to study the potential of building electric roads that can power EVs wirelessly, a process also known as inductive charging. If everything checks out, so to speak, the duo will construct a stretch of road up to one-third of a mile long as early as next year in Gothenburg, Sweden’s second-largest city.

“Electric roads are another important part of the puzzle in our aim of achieving transport solutions that will minimize the impact on the environment,” said Niklas Gustavsson, the Volvo Group’s executive vice president of corporate sustainability and public affairs.

The Swedes will not be the first to debut this type of cleantech infrastructure. Last year, the city of Gumi, South Korea, led the way by installing a 14-mile electric road that wirelessly charged electric buses equipped with an underside device. When the bus drove over cables embedded underneath the road surface, the device converted the cable’s magnetic fields to electricity, according to Discovery News.

A few years ago, a version of the South Korean buses ended up in Park City, Utah, and McAllen, Texas, via WAVE, an American company that licensed the technology. But unlike Utah, which now runs the buses (that get charged by parking over pads, not driving on a road) on its University of Utah campus, McAllen ran into financial problems, and the project stalled. Last November, the city decided to jump-start it once more. Other cities reportedly exploring these buses include Long Beach, Calif.; Monterey, Calif.; New York City; and Seattle.

How soon could wirelessly charged EV cars hit the market? With Toyota in the midst of testing three modified Prius models in Japan, it could be just a few years away.

Volvo has also been conducting experiments with wirelessly charging EV cars in Belgium with its C30 Electric model, according to Green Car Reports. If the car manufacturer’s electric road in Gothenburg becomes a reality, it will be built along a new bus line dubbed “ElectriCity,” and three of its plug-in hybrid buses currently running in the city will be modified to charge while in operation.

“Close cooperation between society and industry is needed for such a development to be possible,” said Gustavsson, “and we look forward to investigating the possibilities together with the city of Gothenburg.”

Photo of Gothenburg, Sweden road by Mats Lindh courtesy Creative Commons

View the original story here.

How innovative solar is trumping oil in Tanzania

TakePart | May 20, 2014

Mtae Village in Tanzania. Photo by Rod Waddington courtesy Creative Commons.

Mtae Village in Tanzania. Photo by Rod Waddington courtesy Creative Commons.

While nearly 20 percent of people worldwide lack access to electricity, the rate is even higher in the East African nation of Tanzania: 84 percent of the country is off the grid. In the country’s rural areas, access is even sparser.

Sounds like a sweet spot for solar, right? But the up-front costs for a solar panel, battery, and charger are out of reach for the average village resident, not to mention the additional costs of equipment maintenance and repair. Rent-to-own schemes, which require users to pay for their system over time, aren’t practical either, given today’s rapid advancements in technology. So kerosene lamps and diesel fuel generators have remained the default go-to for most.

What if rural Tanzanians could bypass the financial barriers and lease their solar systems instead? What if this enterprise could create local jobs by employing agents to sell electricity services door-to-door?

That’s the business model of Off.Grid:Electric, a start-up founded in 2012 by a trio of American social entrepreneurs.

“We’re the SolarCity of Africa,” said cofounder Erica Mackey. She was originally interested in finding a solution to last-mile rural health care delivery in Tanzania, but switched to energy services after locals told her the lack of access to electricity was the largest obstacle to rural development. “We realized that the biggest barrier to implementing solar on a wide scale was because customers had to assume a lot of risk. So we take on that risk and deliver energy services.”

Off.Grid:Electric customers get a solar panel and metered battery storage and have electrical accessories (such as a charger) installed in their home. They prepay for as much electricity as they want—24 hours of power costs the equivalent of 20 cents a day, or about $6 a month—about what the average Tanzanian household spends on a night’s worth of kerosene for a single lantern. Families might use as many as three lantern loads per night, depending on the circumstances, Mackey says. Solar power can provide 35 times more light—and charge phones. An app enables subscribers to re-up their accounts using their phones.

Affordable electricity provides families with more time for work, study, and leisure activities. And clean electricity offers big health and environmental benefits over kerosene and diesel. Apart from the carbon emissions associated with the fuels, Mackey said that operating a single kerosene lamp indoors for four hours is the equivalent of secondhand smoke from two packs of cigarettes.

By using the “Avon lady” sales model that deploys locals to sell Off.Grid:Electric’s services door-to-door—more than 300 agents are in the field—the company has created jobs that pay three to four times more than what individuals were earning before, Mackey says.

The company operates in three regions of Tanzania and has enrolled more than 70 percent of homes in some villages, according to Mackey. Thanks to a recent $7 million funding round from high-profile investors such as SolarCity, Vulcan Capital, and Omidyar Networks, Off.Grid:Electric plans to move into other parts of the country, anticipating it will have close to 1,000 agents on the ground by the end of the year. It hopes to expand to Uganda and Kenya.

“That’s one of the most exciting things we can do—to make an African rooftop investable for a Western investor,” Mackey said. “That alone puts resources behind a big problem.”

Photo of Mtae village, Tanzania by Rod Waddington courtesy Creative Commons

View the original story here.

Will UC make history and pull the plug on fossil fuels?

CALIFORNIA Magazine | April 21, 2014

When 29-year-old UC Berkeley student Ophir Bruck spotted Sherry Lansing, the former CEO of Paramount Pictures, on her way to a University of California Regents meeting, he was holding on to a key that he hoped she wouldn’t refuse.

“We’re here to call on the UC Regents to take bold action on climate change,” Bruck told Lansing last May, as she walked past 58 chanting students chained to two homemade structures designed to represent oil drilling rigs. “Will you symbolically unlock us from a future of fossil fuel dependence and climate chaos?”

“I drive a Prius,” Lansing replied, without stopping.

But now the issue is coming to a head at the University of California system, as activists push hard for it to become the nation’s first large public research institution to jettison fossil fuel investments. Over the coming months, the UC Board of Regents—trustees of a $6.4 billion endowment, one of higher education’s greatest—will be forced to grapple with the question.

As climate change accelerates faster than ever before—and with the world’s top oil, gas and coal companies already controlling a tremendous amount of fossil fuels—college students all over the country are urgently pressuring universities to divest their holdings of these corporations. Thus far 10 U.S. colleges and universities have committed to divest, and the movement is active on 450 campuses nationwide. To date, over 60 more entities (mostly municipalities, churches and foundations) have heeded the call to divest, attributing their actions in part to a desire to leave a world that future generations will be able to inhabit.

But it has particular frisson at UC Berkeley, where on Monday student activists dressed in black kicked off Earth Week 2014 by lying down in Dwinelle Plaza to simulate a “human oil spill”—and to demand the UC system divest itself of fossil fuel companies. With historically successful divestment campaigns targeting then-apartheid South Africa, tobacco companies and Sudan, Cal students have been catalysts for turning financial calculations into moral ones.

“If we do not divest from fossil fuels, and continue business as usual, future UC students will not have livable futures—and it’s part of the Regents’ fiduciary duty to ensure that they do,” says 21-year-old UC Berkeley junior Victoria Fernandez, one of Fossil Free Cal’s campaign leaders.

Student activist Victoria Fernandez chained herself to a mock oil rig as a protest against UC fossil fuel investments at a May 2013 Board of Regents meeting in Sacramento, Calif.

Student activist Victoria Fernandez chained herself to a mock oil rig as a protest against UC fossil fuel investments at a May 2013 Board of Regents meeting in Sacramento, Calif.

Fernandez, an environmental studies major, has made her cause consistently visible to the Regents over the past year. She repeatedly turns up at their meetings to give public comments, was one of the 58 chained to the oil rig, and regularly tries to engage the throng of students rushing through Sproul Plaza to join divestment efforts.

She’s motivated by her father, the son of a braceros agricultural worker from Zacatecas, Mexico who labored on a date farm in Indio, Calif. “My dad never wanted to waste anything and recycled everything—those values were cemented in me growing up,” she said. When her father immigrated to the U.S. at the age of 5, the family lived in the one tiny shack sitting in the midst of a huge stand of palm trees.

Bruck, an environmental studies re-entry student who is poised to graduate next month, says that divesting presents transformational promise for society. “It’s more than about just reducing carbon emissions—it’s a justice issue,” he says. “It’s an opportunity to rethink outdated political, economic and social systems out of which the crisis was born.”

While UC has been listening to what Fernandez and Bruck are saying about the need to divest, it’s not fully convinced. UC Regent Bonnie Reiss—who served as a climate advisor to former California Gov. Arnold Schwarzenegger—and UC Chief Financial Officer Peter Taylor question the benefits of divestment from a portfolio tasked with bringing in returns to support faculty research and student scholarships, as well as whether divestment would actually weaken the industry at all.

“UC’s mission is not just to fight climate change—our primary mission is access and affordability to receive a great education,” Reiss says. “So it should be a really rare incident where you’re putting any restrictions on your investment criteria that are anything but maximizing your return on investment.”

Both Reiss and Taylor point to the UC’s decision to divest from tobacco stocks in 2001 as proof of such risk. Each year, the university system analyzes how the portfolio would have performed had it not divested. During the 2012-2013 fiscal year, the portfolio earned $44.9 million more without the tobacco stocks.

But when looking at its cumulative difference calculated between the portfolio and its hypothetical alter ego between 2001-2013, the portfolio lost $471.6 million. “Are tobacco companies any less vibrant since 2001?” Taylor asks. “I don’t think it’s appropriate for staff members make value judgments on whether we should invest in tobacco companies, if genetic engineering is good or bad, if fossil fuels are good or bad. Where do you draw the line? What’s the answer to that? I’d love to know.”

Back in 2011, a divestment campaign targeting a select group of coal companies failed to take off on campus. But a broader initiative gained momentum last spring, a few months after climate activist Bill McKibben spoke at Berkeley as part of a national tour to rally supporters around the campaign organized by his nonprofit organization 350.org. Its call: Institutions should divest from the top 200 oil, gas and coal companies.

Bruck was in the crowd that evening—one of just 15 to 20 students among a few hundred people, he observed, when McKibben asked all the students in the room to stand up.

“He called upon us, saying that you have the power to take action and to leverage your position as students and push your institutions to act on climate,” Bruck says. “The whole presentation—it gets you mad, it gets you scared. Not fearmongering-scared, but realistically concerned about everything you care about.”

350.org’s argument is based on research showing that if the top companies burned all of their reserves, it would raise the earth’s temperature beyond 2 degrees Celsius—the amount that governments agreed not to exceed collectively in the international climate agreement brokered at Copenhagen in 2009. Anything beyond this threshold, U.N. climate scientists predict, will create a world of heat waves, unprecedented sea-level rise and not enough food and water to support an increased population of nine billion people by 2050. Recently, the UN’s Intergovernmental Panel on Climate Change released a report concluding that greenhouse gas emissions need to be cut from 40 to 70 percent by midcentury in order to prevent a climate catastrophe.

And according to Carbon Tracker, the London-based think tank that conducted the top 200 companies research, these corporations have five times more carbon to burn than the amount that would keep the earth below the two-degree limit.

After McKibben addressed the students, Bruck recalls feeling a responsibility to take action, though he had never really committed himself to organizing on an issue before. “Things in my life culminated where I was ready to engage myself at this moment—and climate change was not one of those issues until I came out of that talk,” he says.

Students try to catch the attention of UC campus chancellors and the Board of Regents outside its May 2013 meeting in Sacramento, Calif.

Students try to catch the attention of UC campus chancellors and the Board of Regents outside its May 2013 meeting in Sacramento, Calif.

Students at Cal and other UCs adopted 350.org’s call for action. They began asking the Regents to divest $11.2 billion  (a $6.4 billion general endowment pool and an additional $4.8 billion sitting in campus endowments) from these top 200 companies within five years of making the commitment. Their kickoff rally was at the Regents’ Sacramento meeting last May, when they chained themselves to the symbolic oil rig, chanted calls for divestment and gave a 15-minute speech to the regents via 15 students speaking one minute at a time, so as not to violate the one-minute public comment limit.

In January, after Fernandez and Bruck discussed the issue with a group of Regents over lunch, the Regents agreed to set up a task force comprised of students, Regents and faculty that would examine the issue and bring its findings to the Regents’ Committee on Investments. The task force would then make a recommendation to the committee, which would in turn make their recommendation to the full body of Regents. Finally, Regents would vote on whether to divest its endowment.

“It’s the same process that the Regents went through before voting to divest from Sudan in 2006,” says Bruck.

But unlike the Sudan divestment—one that involved just nine companies—oil, gas and coal companies are a trickier and more pervasive proposition. Taylor estimates that of the university system’s $6.4 billion general endowment holdings, “just north” of $100 million are invested in fossil fuel stocks.

“It’s not impossible, but it’s an uphill battle for the Regents to approve this,” says Reiss. “We need to analyze the true costs and benefits.”

She contends that UC initiatives such as its green building requirements, and UC President Janet Napolitano’s goal to get the nine-campus system carbon neutral by 2025, are more effective ways to fight climate change. Green construction, she says, not only reduces carbon emissions, but also creates markets for sustainable building materials and clean technology.

Students such as Fernandez and Bruck admit that if UC decides to divest from fossil fuels, it would be a symbolic gesture and probably not make an impact on the huge corporations’ bottom lines. But they insist there is more to gain by changing public opinion.

“At the end of the day, we’re trying to stigmatize the fossil fuel industry and take away their social license to operate,” Fernandez says. “The harmful things fossil fuel companies do to communities are not seen by the economy and the world as a whole. They hurt them economically and health-wise. Look at Chevron in Richmond.”

Creating that social stigma has worked before. Although UC Regents and Berkeley chancellors initially resisted thousands of anti-apartheid activists pushing for divestment from South Africa, the university system did so in 1986 after 18 months of demonstrations and physical confrontations between protestors and campus police, anti-apartheid activist and Berkeley alumni Steve Masover has recalled. In 1990, Nelson Mandela credited the Berkeley movement with playing a significant role in the downfall of apartheid.

Bruck is bracing for the long haul. After graduation, he says, he can see himself continuing to do climate change organizing full-time.

CEO Andrew Behar of As You Sow, an Oakland-based shareholder activist group, sees another compelling financial reason to divest. He’s among a growing group of investors warning of the risk of investing in fossil fuel companies because of the “carbon bubble”—the idea that the value of fossil fuel stock is overpriced. The theory goes like this: If governments pass climate regulations or carbon taxes to prevent the earth’s temperature from rising beyond 2 degrees Celsius, fossil fuel companies will be forced to leave most of their reserves in the ground. To keep that temperature threshold, according to a 2013 study by Carbon Tracker, only 20 to 40 percent of those reserves could be burned.

Behar estimates the value of the carbon bubble, or the industry’s “stranded assets,” as they’ve also been dubbed, to be $20 trillion. He says that in the last year, the bubble has already started to burst as coal has been dumped in favor of natural gas and renewable energy sources.

“Nine coal companies went bankrupt last year. If you bought coal two years ago, you lost 58 percent of their portfolio’s original value,” he says. “It’s moving more rapidly even than anyone thought possible.”

In March, in a response to pressure from activists, ExxonMobil released a report to shareholders that concluded “we are confident that none of our hydrocarbon reserves are now or will become ‘stranded.’ We believe producing these assets is essential to meeting growing energy demand worldwide, and in preventing consumers—especially those in the least developed and most vulnerable economies—from themselves becoming stranded in the global pursuit of higher living standards and greater economic opportunity.”

Out of the 10 colleges that have chosen to divest in fossil fuels, most are small and private. The largest was Pitzer College, which announced on April 12 (via trustee Robert Redford) its decision to divest its $130 million.

There’s a reason why no large public institution has stepped into the ring thus far. “Many universities remain unwilling to risk their endowments and need, frankly, more certainty,” says Taylor, citing an op-ed by the University of Michigan’s Chief Investment Officer Erik Lundberg arguing that divestment was impractical.

And with a $32.7 billion endowment—the largest treasure chest among all U.S. colleges and universities—Harvard President Drew Faust emphatically dismissed divestment, citing concerns that the university would inappropriately appear to be a “political” actor, as well as risk future returns. (Recently, the university signed on to UN-backed principles for “responsible investment.” That is a non-binding framework, which critics see as an empty gesture).

But those who have studied the impacts of fossil fuel divestment—as well as at least one college that divested—refute the idea that it will inevitably lead to financial losses.

“Our analysis found that if you are doing market cap weighted indexing, there is very little cost to divestment from a risk standpoint,” said Liz Michaels of Aperio Group, a Sausalito, Calif.-based investment management firm specializing in value-based investing. The company doesn’t maintain a position on fossil fuel divestment.

Aperio—which subscribes to the philosophy that investors can only match the market, not beat it—used Barra proprietary software to remove a portfolio’s holdings in the fossil fuel sector, then asked it to reinvest and reweight them to match market performance as much as possible.

“We’ve done much better after divestment,” said Stephen Mulkey, the president of Unity College in Maine, which divested in November of 2012. “We’ve achieved significant gains because we are paying closer—almost daily—attention”—a constant watch of its portfolio funds to ensure that fossil fuel holdings stay below 1 percent of the college’s endowment. The college also invests all proceeds from the fossil fuel holdings into an internal fund that provides financing for energy efficiency, renewable energy, or other sustainability projects, with the money saved then invested back into the fund.

The UC Regents’ Committee on Investments Task Force has yet to be convened. At last month’s Regents meeting, Fernandez and Bruck dutifully waited their turn to speak at the public comment session and remind the assembled group of the task force’s importance. Still, the students say that a vote on divestment is possible within the year; Taylor says a Regents discussion by November is realistic.

Many divestment backers simply advocate switching from fossil fuel holdings to cleantech and green bond holdings. But Berkeley energy professor and divestment advocate Daniel Kammen, a member of the Intergovernmental Panel on Climate Change, says it’s also important to draw on the expertise of the oil, gas and coal companies, spurring them to help create an economy that does not rely on fossil fuels.

“In the transition to renewable energy, we need to move them from extractive companies to knowledge-based companies,” he says. “There are more people that are really well versed in technology and economic policies in the big energy companies than anywhere else. So it would be crazy not to forge partnerships with them and build on their resources.”

All photos of Fossil Free UC action at University of California Board of Regents Meeting by Mauricio D. Castillo

View the original story here.

Content Protected Using Blog Protector By: PcDrome.