Billion dollar seafood waste upcycled into profits

The Guardian US/UK | December 14, 2015

TidalVision_founders

Tidal Vision founders Craig Kasberg (L) and Zach Wilkinson in Juneau, Alaska. Photo credit: Alex Gaynor/Tidal Vision

Since he started working on commercial fishing and crabbing boats as a teenager, Craig Kasberg loved being out at sea. Yet he was bothered by the amount of fish waste he saw being dumped back on to the ocean floor.

“The seafood industry is behind the times when it comes to byproduct utilization,” says Kasberg, a fishing boat captain based in Juneau, Alaska. “Even though some companies are making pet food, fertilizer and fishmeal [out of the waste], there’s still a lot being thrown away.”

Every year, US fishermen throw out an estimated 2bn pounds (900m kg) in bycatch alone – an amount worth about $1bn (£660m), according to nonprofit organization Oceana.

Because the US Environmental Protection Agency does allow (in some cases) fish waste to be tossed back into the ocean, seafood processors commonly dispose fish guts, heads, tails, fins, skin and crab shells in marine waters. Once there, the decomposing organic matter can suck up available oxygen for living species nearby, bury other organisms or introduce disease and non-native species to the local ecosystem.

Last autumn, Kasberg took action. He recruited a small team of scientists and engineers. Together, they

Tidal Vision salmon leather

Salmon skin leather tanned by Tidal Vision using its vegetable-based process in Juneau, Alaska. Photo courtesy Craig Kasberg/Tidal Vision

developed a vegetable-based tanning process for salmon skin. Now – a little over a year later – his company Tidal Vision has launched a line of wallets made from salmon skin leather.

The company has also been working on an environmentally-friendly way to extract a compound called chitin from crab shells to make chitosan, which has many uses in agriculture and in medicine. The conventional method for extracting chitin uses sodium hydroxide, a caustic chemical.

Tidal Vision is getting ready to process the chitosan so that it can be turned into antibacterial yarn and fabric. One of the byproducts of its extraction process is an 8 percent nitrogen organic fertilizer, which the company is also working to bring to market.

Kasberg is part of a growing group of seafood industry entrepreneurs moving beyond fertiliser and fishmeal to upcycle the seafood industry’s waste in innovative new ways.

“Seafood is a tight margin business, so anything that can be done to reduce waste will help profitability,” says Monica Jain, founder and director of Fish 2.0, a pitching competition for sustainable seafood entrepreneurs. Finalists get exposure to potential investors and can win cash prizes. One of the winning startups at last month’s event in Silicon Valley offers a way for aquaculture farmers to turn their fish waste into algae.

SabrTech, based in Nova Scotia, Canada, took two years to develop a system called the RiverBox. Housed within a standard shipping container – picture a walk-in closet with shelves along one wall – it contains up to 10 tiers where algae grows. “Farmers pump the water [from their fish pen] straight into the RiverBox,” explains SabrTech founder and CEO, Mather Carscallen, who is finishing his PhD in ecology.

Algae grown in the RiverBox

Algae grown in the RiverBox. Photo courtesy SabrTech

The algae growing on each tier acts as a bio-filter to purify the water, according to Carscallen, by removing nutrients – such as nitrogen and phosphorous – which the algae uses to grow. The water then goes back into the fishing pen and farmers can harvest the algae to use as fish feed or for other applications (such as biofuel, fertiliser or industrial clean-up). This, says Carscallen, creates a closed-loop aquaculture system.

Another Fish 2.0 competitor focused on waste is HealthyEarth, based in Sarasota, Florida. The company is in the process of transforming the traditional mullet fishery in Cortez, a small Gulf coast fishing village considered to be one of the oldest in the US.

“Mullet is wild caught in the Sarasota area near Tampa Bay,” says Christopher Cogan, CEO of HealthyEarth, who is a longtime entrepreneur with an interest in impact investing. “But because the fish is prized for its roe [fish eggs], the rest of it is thrown away.” Last year, HealthyEarth initiated a FIP (fishery improvement process) as a way to formally set in place sustainable policies and practices for the mullet fishery. It collaborated with Florida’s Fish and Wildlife Service, the Mote Marine Laboratory (an independent marine research institution), and local mullet fishermen to help shape the process.

In order to give fishermen financial incentive to sell more than just mullet roe (a delicacy known as bottarga), HealthyEarth wants to build an $11m processing plant that can process the roe, extract omega 3 fish oil and process the carcasses into fish meal or fish feed. The two existing local processing plants only have technology to cut the roe out, Cogan says.

HealthyEarth plans to give local fishermen the opportunity to have shares in the processing plant. Cogan says the business should pay for itself once 20 to 30 fishermen come on board. “We want to give the local guys, who follow [the FIP] rules, equity in the business,” he says. “We’ll pay them premium for the roes and the fillets.”

Farms without wildlife don’t produce safer food

Civil Eats | Aug. 11, 2015

Lettuce crops

Lettuce crops. (Photo credit: Suzie’s Farm courtesy of Creative Commons)

 

Most leafy green lovers probably remember the moment when they became suspicious of spinach.

In 2006, an E. coli outbreak that killed three people and sickened about 200 more was traced to the cool-weather crop growing along California’s Central Coast. Despite the fact that federal and state investigators claimed it was not possible to determine exactly how the dangerous E. coli strain spread to the farm, cattle and wild pig manure were implicated as the sources of the bacteria.

The following year, the state’s farming industry pushed out the California Leafy Greens Marketing Agreement, a set of recommended practices based on previous guidelines issued by to U.S. Food and Drug Administration (FDA) to promote food safety on farms. Though voluntary, it covers over a dozen salad fixings (think spinach, arugula, kale, and several types of lettuce) and has since become widespread throughout the nation.

Simultaneously, many produce buyers began asking growers to clear areas near fields of any vegetation. As a result, the farm fields along the California coast changed radically after the outbreak, as farmers did away with wooded areas, medians, and hedgerows, and most farms became relatively sterile landscapes, aside from the crops.

Now a new study [PDF] is calling the efficacy of that practice into question.

“The bottom line is that removing habitat around farm fields is ineffective at making food safer from pathogens,” said Daniel Karp, a U.C. Berkeley postdoctoral researcher whose work is funded by The Nature Conservancy. “It has been shown in this region that there are a lot of benefits to surrounding vegetation as well, such as providing a home for pollinators, which are declining across the nation.”

The research—which was published yesterday in the journal Proceedings of the National Academy of Sciences (PNAS)—used three sets of industry data from 2007 to 2013 and mapped the results of 236,000 tests for E. coli and Salmonella on leafy greens, irrigation water, and rodents on Central Coast farms.

Karp and his collaborators found that among 57 farms in Salinas, Monterey, San Benito, Santa Clara, and Santa Cruz counties—the source of three-quarters of the the country’s leafy greens—the overall frequency of disease-causing strains of E. coli increased in the six-year period. But it turned out the prevalence increased the most where surrounding wildlife vegetation had been cleared away.

In areas that had kept some natural vegetation intact—a fact the researchers verified using aerial imagery—the team also found that the overall presence of disease-causing strains of E. coli and Salmonella did not go up.

Karp says that by looking to California as an example, the study results could have implications for all of America’s 4.5 million acres of farmland where foods eaten raw are grown, and the wildlife habitat that surrounds this land.

“Federal legislation [enacted] in 2011 will give the FDA the ability to regulate farming practices,” he said, referring to the controversial Food Safety Modernization Act that has yet to be implemented. “While it doesn’t require farmers to remove habitat, my worry is that these practices will spread across the nation as buyers will put pressure on their growers and won’t buy from them unless they remove wildlife habitat.”

Screen Shot 2015-08-10 at 9.53.09 PM

The Wild Farm Alliance, a nonprofit organization that advocates for the importance of protecting native species through sustainable agriculture has expressed concern about the dangers of removing wildlife habitat near leafy green crops all along.

Karp points to ways that conservation, agriculture, and livestock can flourish side by side, such as maintaining natural habitat (like trees) as a buffer between livestock and leafy green fields. The vegetation could filter runoff from grazed lands in the soil, he said.

“Or you could plant crops that need to be cooked, like artichokes, corn or wheat,” as buffer between livestock and leafy greens, Karp said.

Another option that could possibly work, he said, is to fence off waterways upstream from leafy green fields in order to prevent wildlife and cattle from defecating in the stream, which might eventually transport the feces downstream.

“We need to talk about how we can manage farming systems that both produce food and livestock and conserve nature at the same time,” Karp said. “We need to think creatively.”

Figure from study: Promising practices include (1) planting low-risk crops between leafy green vegetables and pathogen sources (e.g., grazeable lands); (2) buffering farm fields with noncrop vegetation to filter pathogens from runoff; (3) fencing upstream waterways from cattle and wildlife; (4) attracting livestock away from upstream waterways with water troughs, food supplements, and feed; (5) vaccinating cattle against foodborne pathogens; (6) creating secondary treatment wetlands near feedlots and high-intensity grazing operations; (7) reducing agrichemical applications to bolster bacteria that depredate and compete with E. coli; (8) exposing compost heaps to high temperatures through regular turning to enhance soil fertility without compromising food safety; and (9) maintaining diverse wildlife communities with fewer competent disease hosts.

Robotic plants could be coming to your garden

TakePart | October 24, 2014

plantoid600pxWhen looking at gardens, landscapes, or forests, it’s easy to focus on what’s visible. Flowers, green grasses, and large trunks are the pretty parts, but below the surface is where plants and trees show their smarts.

Roots spread out, hold fast to the soil, and transmit information to the branches above, telling them which direction to grow, how long to go, and when to drop leaves. They’re also incredibly efficient at piercing the soil.

It’s an intricate system, and now a group of Italian scientists have created a robotic plant that mimics nature’s root system to monitor soil pollution, prospect for minerals, and look for water.

Meet the first plantoid.

It’s made of artificial materials, embedded with sensors, and equipped with a computer chip, a plant robot designed to simulate a real-life tree—trunk, branches, leaves, and all.

But the real stars in this fake-plant show are the roots, which really “grow.”

“We want to use robotics systems to better understand the living systems we use as a model,” said Barbara Mazzolai, a biologist at the Italian Institute of Technology in Genoa. She’s spent three years designing the plantoid so it can copy the way plant root tips grow and move through soil based on what they find in the environment.

So how does it work?

A motor unwinds a spool of polypropylene filament inside the trunk. The root tips—which are made of Teflon—have nine sensors each that can measure a range of a soil conditions. Those include levels of water, light, gravity, temperature, and pH. The plantoid can also detect the presence of nutrients such as nitrogen and potassium.

The roots grow based on the information received from sensors via a microcontroller in the tip. If it works right, the plantoid could be used in agricultural fields to detect heavy metals such as mercury and cadmium.

“It’s like a new microscope that biologists can use as a platform to study natural systems,” said Mazzolai.

Her team has a few kinks to work out before we start sending plantoid Roombas into our gardens. The first hurdle is to get the roots to move and bend simultaneously. To do that, she says, they are looking for the right Velcro-like material for the filament.

“This is the most challenging part to solve,” she said. While the plantoid is not ready for commercialization, Mazzolai is asking companies to explore the ways it could be used in industry.

Some examples? In search and rescue missions, Mazzolai said, a plantoid could send out root hairs that would help to anchor rubble and keep it from falling.

Another application could be in the field of surgery, where the biomechanics of the root tip could be applied to an endoscope. It could grow and move inside the body without damaging tissue and might be able to release drugs, Mazzolai said.

In space, a plantoid root system could anchor spacecraft and act as an exploratory arm to sample soil quality on other planets.

Photo of plant robot courtesy Barbara Mazzolai/Plantoid Project