This stove cleanly burns plastic and charges a phone

TakePart | Mashable | Nov. 14, 2014

KleanCook stove

The KleanCook stove inspired the design for the K2 cookstove. Photo credit: Energant

It’s no secret that the smoke spewing from open fires and from indoor coal-fired cook stoves is a silent killer in the developing world, and a contributor to climate change. More than 4 million people die each year from health problems related to inhaling carbon monoxide or particulate matter released from stoves that burn wood, biomass, or coal, according to the World Health Organization.

Despite a long-running government campaign to eradicate dirty fuels from households, the problem persists in China. But thanks to two young entrepreneurs, a new kind of cook stove—one that can cleanly combust small amounts of plastic trash and convert its excess cooking heat to electricity—could be on its way into kitchens across China.

“Smoke-related illnesses are a bigger issue than malaria or HIV,” said Jacqueline Nguyen, one of the entrepreneurs and a University of California, Berkeley, senior toxicology student. “It kills more than HIV and malaria worldwide per year.”

While Nguyen handles business and marketing for Energant, the company behind the device, her best friend, Mark Webb—a 2011 Berkeley graduate who studied biochemistry—designed the K2 cook stove.

The K2 reduces smoky emissions by 95 percent, according to tests Webb conducted. Using the excess heat created during operations, it can generate enough electricity to trickle charge a mobile phone. It has the ability to burn biomass briquettes cleanly as well.

It can also burn plastic and wood without toxic emissions as long as the material—which emits volatile organic compounds when burned—doesn’t exceed 8 percent of the mass being used as fuel, according to Webb.

The ability to burn plastic and wood cleanly is what distinguishes the K2 model from the KleanCook stove, the product Webb designed last year.

Webb got the idea for the K2 cook stove during pilot testing of the KleanCook model in the Philippines this past summer, when he and Nguyen noticed people cooking food over open fires all across the country—and burning plastic bags as a way to get those fires started.

“We decided to make the K2, which was centered specifically around being able to burn off all of the toxic material from this trash,” Webb said.

K2 cookstove from Energant

The K2 cookstove. Photo credit: Energant

But because the two wanted the cook stoves to generate income for local people who would sell the devices for profit, they decided to target the Chinese market, as business costs in the Philippines were too high.

How does it work, and what differentiates it from other clean cook stoves?

The stove’s built-in fan has a geometric design and resembles the turbo fan of a jet engine. When the fan blows air into the fire, it creates forced convection, which makes the stove more fuel-efficient. Carbon monoxide is then converted to carbon dioxide.

The stove’s greater efficiency means that 50 percent less fuel has to be burned to create the same amount of heat, resulting in lower emissions, according to Webb. A patent is pending on the K2’s design.

The stove also contains a thermoelectric generator. When one side of the device is exposed to heat and the other is kept cool, an electric current is generated as the heat travels from one side of the generator to the other. That electric charge is then fed into a voltage regulator to produce a steady current.

Because it’s made from cheap metal, the stove costs only $16 to manufacture. Energant plans to sell the stoves to regional distributors for $20 to $25. In turn, the salespeople will sell the units at retail for $50—a price that Webb and Nguyen say the Chinese government has deemed an acceptable amount to charge based on disposable income.

The debut of the K2 cook stove could be timely, as recent reports from China indicate there’s been an increase in burning trash and plastic, which releases carcinogenic dioxins.

Webb and Nguyen’s clean cook stove venture attracted support from Berkeley’s Development Impact Lab after the pair won the lab’s “Big Ideas” student innovation contest with the KleanCook stove.

The development lab is one of seven university efforts funded by USAID via the U.S. Global Development Lab. That initiative gives money to seven centers at universities around the country that support students creating solutions to global problems such as climate change, food security, health, and poverty.

“Our whole market approach to the KleanCook was to have the cheapest possible thing that was the most scalable and can deliver electricity for devices,” Webb said.

KleanCook also won prize money from the Clinton Global Initiative University contest this past year, which allowed the entrepreneurs to fund KleanCook’s pilot testing in the Philippines.

Though the K2 cook stove—KleanCook’s more sophisticated sister—appears promising, it isn’t ready for market yet. Webb says Energant has a pre-manufacturing prototype that he’s tested for efficiency using a consumer carbon monoxide sensor that recorded the carbon dioxide output of the stove.

To win the confidence of Chinese consumers, he says K2 needs to be tested using validated equipment—something that Energant would have to pay for specialists to do at Beijing’s Tsinghua University.

The company hopes to raise $30,000 from an Indiegogo campaign to pay for the testing.

View the original story here.

Drought dowsing goes hi-tech

California Magazine | Aug. 11, 2014

Wellntel pilot

Wellntel is conducting its first pilot with farmers and residents in the drought-stricken town of Templeton, Calif. Photo credit: Wellntel

This year, groundwater is serving as California’s pinch hitter, supplying about 60 percent of the state’s needs during this historic drought. But until now, it’s been an impossible resource to manage.

We don’t have enough data to know just how much groundwater is hanging out below any given house or farm. Because it’s unregulated by the state, anyone can pump as much water as they want—a point of contention between those who think people own the water underneath their property and those who believe groundwater is a communal resource. To make matters worse, groundwater hasn’t been replenished during these dry times, and there’s been a recent rush to drill more wells in the San Joaquin Valley.

But while we can’t make it rain on California, nor force the legislature to pass two bills currently being considered that would mandate local governments to regulate their groundwater, new technology is allowing us to better “see”  the water beneath the ground and could help us make smarter decisions about how best to use it.

A recently developed sensor-based device that measures groundwater is helping UC Berkeley researchers understand just how much of this resource we’ll have in the coming decades. Developed by Wisconsin-based startup Wellntel, the product attaches to the top of a well and uses sonar to measure water levels and a well’s pumping rate every 30 minutes, then sends the data to the computing cloud, allowing researchers to make use of it.

In the last few months, geography department professor Norman Miller and recent Ph.D. graduate Raj Singh have started incorporating data from the devices into the computer-based groundwater model they’ve been developing for the last four years. “One of the big problems I see is the availability of water due to land use stressors under climate change,” says Miller, a hydrometeorologist. “So one of the outstanding questions is how much (groundwater) is left on planet, who’s using it, and when. But there’s a lot of water that we can’t see.”

The current problem, the researchers say, is that while satellite data can show how much groundwater there is on a regional level—in the Central Valley, for instance—it can’t capture how much there is under a city, or at the farm level. There just isn’t enough data from U.S. wells to get a deep understanding of how groundwater flows. The predominant techniques used to measure well water levels—measuring tapes or pressure sensors—are labor-intensive and costly. The U.S. Geological Survey monitors less than 10 percent of its 20,000 wells, California’s Department of Water Resources monitors a few hundred.

But by integrating the Wellntel data into their current model, the Cal researchers believe they can provide a deeper understanding of how much groundwater we have now, and how much we’ll have in the future as climate change takes its toll.

“It’s like moving from a black-and-white to an HD television,” Singh says of the difference in resolution—which with the new data has advanced from gathering data at the 10-20 kilometer level down to a 100-meter level. At that resolution, he says it’s possible to discern the land’s topography and groundwater level differences from houses a few blocks apart.

With this knowledge, farmers and landowners could be better equipped to allocate their consumption, plan their growing seasons and save for dry times—not unlike the way we manage our bank accounts.

Wellntel is partnering with Miller and Singh on a pilot research project in Templeton, a town just outside Paso Robles on California’s Central Coast. The area has sprouted a number of vineyards and hobby farms in recent decades after its almond groves turned fallow.

“There’s been a huge increase in vineyard development in Paso Robles, and many residents saw dramatic declines in their water levels and had to dig new wells because the water table dropped,” says Wellntel co-founder Nick Hayes. “And some of the new wells have had to go so deep that they have to tap into mineral and sulfur-smelling water—it’s pretty severe and it feels dire to them, and their property values are tied to water in the area.” Some even have had to truck in their water, Hayes adds.

Every two weeks, Miller and Singh receive data (stripped of any identifiers) from 12 Wellntel sensors installed every half-mile throughout the 9-square mile pilot area.

By assimilating this data into their current groundwater model, the researchers say they’ll eventually be able to predict how groundwater levels will change from season to season over the next few years, as well as over the coming decades based on a range of greenhouse gas emissions scenarios up to 2050.

Miller says it’s not clear right now just when they’ll be able to make those predictions. But the Cal researchers have met several times and shared their model with Frances Chung, the chief of the modeling branch at the state’s Department of Water Resources, and they say the state is interested in making use of the new technology. Such an ability to collect information about groundwater levels could boost the state’s pro-regulation movement.

“If you limit water it has to be based on what you know, and right now it’s extremely difficult to control and monitor,” Singh says. “But as we get more information and it becomes more scientific—and more objective based on facts—it will be easier to regulate.”

View the original story here.

The link between dying wildlife, slavery and terrorism

TakePart | July 24, 2014

Rhino Action Day 2010The decimation of the planet’s wildlife is extracting a high cost on humans as it drives child slavery, human trafficking, and terrorism, according to a special report published Thursday in the journal Science.

Take poaching. Beyond the horrific impact on vanishing species, the slaughter of rhinoceroses and elephants for their valuable horns and tusks has bankrolled terrorist attacks in Africa by the extremist group Boko Haram.

The severe depletion of fish stocks around the world, meanwhile, has prompted an increased demand for cheap labor in the form of child slavery. That’s because it takes more time, workers, and money to catch fish that are less abundant, according to Justin Brashares, an ecology professor at the University of California, Berkeley, and the lead author of the Science paper.

“Millions of dollars are being spent by the European Union and the United Nations in anti-wildlife trafficking efforts—China started doing this as well—but almost all of [the efforts] are enforcement based,” he said. “They overlook that more than a billion people rely on natural resources for their livelihoods and don’t have any alternatives.”

Brashares wrote in the report that diminished fish stocks can push foreign fishing boats to travel farther for their catch, which puts more pressure on local fish populations. Such competition for scarce resources can lead to violent incidents, such as when Somali pirates attack foreign fishing boats that enter their waters.

Local, national, and international laws that recognize communities’ fishing and hunting rights—also known as tenure rights—are needed to address the underlying poverty driving such illegal actions, Brashares said.

“Fiji is a popular example where local fishing communities were given tenure rights,” Brashares said. “It seems to have worked very well in regulating harvesting and sustainability and allowed communities to be more connected to economic markets. In Namibia, local communities have secured tenure rights to wildlife and have had really positive outcomes in sustainability.”

So what can you do?

Brashares believes the most effective action individuals can take is to use resources such as GoodGuide—which rates the environmental health and safety of consumer products—or the Monterey Bay Aquarium’s Seafood Watch recommendations to identify responsible purchases. Economic decisions have more impact than emails to members of Congress, he said.

“If you say, ‘I can’t find out if my fish comes from slave labor,’ then I say that’s a great role for our nonprofits,” Brashares said. “We can push the Monterey Bay Aquarium to tell us what fish is socially sustainable.”

Photo of Rhino Action Day 2010 protest in South Africa by Stefan Möhl via fickr/Creative Commons