Billion dollar seafood waste upcycled into profits

The Guardian US/UK | December 14, 2015

TidalVision_founders

Tidal Vision founders Craig Kasberg (L) and Zach Wilkinson in Juneau, Alaska. Photo credit: Alex Gaynor/Tidal Vision

Since he started working on commercial fishing and crabbing boats as a teenager, Craig Kasberg loved being out at sea. Yet he was bothered by the amount of fish waste he saw being dumped back on to the ocean floor.

“The seafood industry is behind the times when it comes to byproduct utilization,” says Kasberg, a fishing boat captain based in Juneau, Alaska. “Even though some companies are making pet food, fertilizer and fishmeal [out of the waste], there’s still a lot being thrown away.”

Every year, US fishermen throw out an estimated 2bn pounds (900m kg) in bycatch alone – an amount worth about $1bn (£660m), according to nonprofit organization Oceana.

Because the US Environmental Protection Agency does allow (in some cases) fish waste to be tossed back into the ocean, seafood processors commonly dispose fish guts, heads, tails, fins, skin and crab shells in marine waters. Once there, the decomposing organic matter can suck up available oxygen for living species nearby, bury other organisms or introduce disease and non-native species to the local ecosystem.

Last autumn, Kasberg took action. He recruited a small team of scientists and engineers. Together, they

Tidal Vision salmon leather

Salmon skin leather tanned by Tidal Vision using its vegetable-based process in Juneau, Alaska. Photo courtesy Craig Kasberg/Tidal Vision

developed a vegetable-based tanning process for salmon skin. Now – a little over a year later – his company Tidal Vision has launched a line of wallets made from salmon skin leather.

The company has also been working on an environmentally-friendly way to extract a compound called chitin from crab shells to make chitosan, which has many uses in agriculture and in medicine. The conventional method for extracting chitin uses sodium hydroxide, a caustic chemical.

Tidal Vision is getting ready to process the chitosan so that it can be turned into antibacterial yarn and fabric. One of the byproducts of its extraction process is an 8 percent nitrogen organic fertilizer, which the company is also working to bring to market.

Kasberg is part of a growing group of seafood industry entrepreneurs moving beyond fertiliser and fishmeal to upcycle the seafood industry’s waste in innovative new ways.

“Seafood is a tight margin business, so anything that can be done to reduce waste will help profitability,” says Monica Jain, founder and director of Fish 2.0, a pitching competition for sustainable seafood entrepreneurs. Finalists get exposure to potential investors and can win cash prizes. One of the winning startups at last month’s event in Silicon Valley offers a way for aquaculture farmers to turn their fish waste into algae.

SabrTech, based in Nova Scotia, Canada, took two years to develop a system called the RiverBox. Housed within a standard shipping container – picture a walk-in closet with shelves along one wall – it contains up to 10 tiers where algae grows. “Farmers pump the water [from their fish pen] straight into the RiverBox,” explains SabrTech founder and CEO, Mather Carscallen, who is finishing his PhD in ecology.

Algae grown in the RiverBox

Algae grown in the RiverBox. Photo courtesy SabrTech

The algae growing on each tier acts as a bio-filter to purify the water, according to Carscallen, by removing nutrients – such as nitrogen and phosphorous – which the algae uses to grow. The water then goes back into the fishing pen and farmers can harvest the algae to use as fish feed or for other applications (such as biofuel, fertiliser or industrial clean-up). This, says Carscallen, creates a closed-loop aquaculture system.

Another Fish 2.0 competitor focused on waste is HealthyEarth, based in Sarasota, Florida. The company is in the process of transforming the traditional mullet fishery in Cortez, a small Gulf coast fishing village considered to be one of the oldest in the US.

“Mullet is wild caught in the Sarasota area near Tampa Bay,” says Christopher Cogan, CEO of HealthyEarth, who is a longtime entrepreneur with an interest in impact investing. “But because the fish is prized for its roe [fish eggs], the rest of it is thrown away.” Last year, HealthyEarth initiated a FIP (fishery improvement process) as a way to formally set in place sustainable policies and practices for the mullet fishery. It collaborated with Florida’s Fish and Wildlife Service, the Mote Marine Laboratory (an independent marine research institution), and local mullet fishermen to help shape the process.

In order to give fishermen financial incentive to sell more than just mullet roe (a delicacy known as bottarga), HealthyEarth wants to build an $11m processing plant that can process the roe, extract omega 3 fish oil and process the carcasses into fish meal or fish feed. The two existing local processing plants only have technology to cut the roe out, Cogan says.

HealthyEarth plans to give local fishermen the opportunity to have shares in the processing plant. Cogan says the business should pay for itself once 20 to 30 fishermen come on board. “We want to give the local guys, who follow [the FIP] rules, equity in the business,” he says. “We’ll pay them premium for the roes and the fillets.”

How one company is feeding farms with food waste

Civil Eats | Sept. 21, 2015

California Safe Soil takes supermarket food waste and turns it into farm fertilizer. (Photo credit: California Safe Soil).

California Safe Soil takes supermarket food waste and turns it into farm fertilizer. (Photo credit: California Safe Soil).

You don’t have to dumpster dive to know that supermarkets send a steady stream of uneaten food to landfills.

Once there, the waste does more than smell bad. It also contributes to climate change by emitting methane, a greenhouse gas that is around 30 times more potent than carbon dioxide. In fact, landfills are the third largest source of methane emissions in the U.S., according to the Environmental Protection Agency (one reason the USDA recently pledged to reduce food waste 50 percent nationally by 2030).

But when a new California state law [PDF] goes into effect this April, large grocery stores in the state will be required to ditch the landfill and compost or recycle their food waste instead.

In order for supermarkets to comply with the impending law, they’ll need more places to put the waste—and one Sacramento-based company appears to be well positioned to respond to this problem. California Safe Soil has developed a process that transforms truckloads of supermarket food waste into farm-ready fertilizer it calls Harvest to Harvest, or H2H.

“This was something that made perfect sense to me,” says CEO Dan Morash, who founded the startup in 2012, after leaving a career as an investment banker in the energy sector. “There’s this huge stream of waste from the supermarkets that is no longer safe to eat as it gets to the end of its shelf life, but it still has a lot of nutrients.”

Using fertilizer made from food waste also cuts down on the need for synthetic nitrogen fertilizer, he adds, which can reduce the amount of nitrate runoff into local rivers and streams, which often lead to dead zones.

The company claims that since its launch in 2012, it has diverted over 2.2 million pounds of food waste from the landfill, preventing the emissions of 3.2 million pounds of greenhouse gases and preventing the need for over 1.1 million pounds of nitrogen fertilizers.

Final Liquid Fertilizer ProductHow is Morash’s product different from standard compost? He worked with soil and fertilizer specialist Mark LeJeune to develop a method that fast forwards the composting process (which is fueled by aerobic digestion, or bacteria fed by oxygen that breaks down organic matter). The process turns food waste into liquid fertilizer in three hours.

First, the food is ground down into a liquid, then treated with enzymes to break down the protein, fat, and carbohydrates into the amino acids, fatty acids, and simple sugars. Then, it’s pasteurized (that is, heated at high temperatures) to kill any pathogens that might be present.

“The average particle size is very small—26 microns,” Morash says. “This [enables it to] mix easily with water.”

There’s a separate stream for organic and conventional food, as California Safe Soil sells an all-organic version. Both are applied to the crops via drip irrigation.

In 2012, Morash and LeJeune opened a pilot plant in Sacramento to develop the technology. The product was commercialized in 2013 and is regulated by the California Department of Food and Agriculture.

“The California Department of Food and Agriculture is concerned about food safety, so we had to prove that [the fertilizer production process] eliminates pathogens,” Morash says. “So we did a research project called a challenge test at the University of California, Davis.”

To show that the product was effective, the company conducted additional experiments with researchers, including one at U.C. Davis and a strawberry expert at U.C. Cooperative Extension.

Morash claims that use of his fertilizer on tomatoes has upped the rate of food production by between 10 to 15 percent.

California Safe Soil’s target market is mainly large farms that grow crops like strawberries, tomatoes, leafy greens, almonds, and wine grapes. Several of the berry growers that he works with supply for Driscoll’s, Morash says.

Broccoli TrialBut orchard crops like fruit and nuts are especially well suited for this liquid fertilizer. Traditionally, orchard-based farmers “need to till the soil to get organic matter in without cutting up the roots,” he says. “So the ability to deliver organic matter to the soil in liquid form is a big positive.”

At the moment, the company processes food waste from 15 stores across five supermarket chains (Grocery Outlet, Nugget, Safeway, SaveMart, and Whole Foods) in Sacramento. Six days a week, the plant processes about 3,750 pounds of food from between seven to eight markets a day (each brings in an average of about 500 pounds daily).

The Sacramento facility is operating at capacity, but he hopes to build others in the coming years. The idea is to locate plants, like the one Sacramento, near grocery distribution centers. This way, after delivering goods to the stores, the centers’ trucks can fill up with food waste for the trip home, Morash says.

There are additional economic and environmental benefits to locating California Safe Soil plants near distribution centers, he adds. Turning food waste into fertilizer not only saves grocery stores the fees associated with sending it to a landfill, but it also prevents the greenhouse gas emissions and extra transportation costs often needed to deliver it there.

“This has a very positive environmental impact across the board,” Morash says. “It’s going to increase the sustainability of agriculture starting right here in California.”

Photos, from the top: Employees moving wasted produce into the processing machine; the final liquid fertilizer product; broccoli from a farm trial with the control on the left and the H2H produced product on the right. All courtesy of California Safe Soil.